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CHAPTER 1

Introduction

1.1 Application area

The deployment of computational methods in the fluid-dynamics design cycle of
modern transportation systems such as spacecraft, aircraft, cars and also ships, has
shown a rapid increase, parallel with the progress in numerical mathematics and
computer capability. At present, the use of computational fluid dynamics (CFD)
in, e.g., ship design is such that, prior to any towing-tank model testing, the fluid-
dynamics design of a ship’s hull is analyzed by means of a computational method.
If necessary, shortcomings of the design can thus be detected and corrected at an
early stage. The large amount of data produced by a fluid-flow computation, allows
us to gain a better insight in (7) topological flow properties such as flow separation,
re-attachment, wave generation and vortex formation, as well as in (i) quantitative
data. Thus, the use of CFD methods results in better ship designs, within a shorter
time span. In this way, CFD contributes to the economy of naval architecture and
shipping, as well as to a reduction of pollution.

To assess the topological character of the flow around a ship one has to be
aware of various complex flow features. For example, the flow around the ship’s top
structure is governed by aerodynamics and the underwater part by hydrodynamics,
while both fluids are separated by a free surface. This free surface represents the
wave pattern generated by the ship traveling at a certain speed (Figure 1.1). This
free surface may show topological changes such as wave breaking and the formation
of spray. In addition to this free surface other complex flow features are present,
such as a stagnation region, a viscous region consisting of boundary layer and wake,
a screw race, and in some cases lift effects on components such as rudder, keel and
hydrofoils.

From a modeling point of view these features can be described by different
mathematical models with varying degree of complexity. In the case of the free sur-
face, the potential-flow model, with nonlinear boundary conditions, can be used to
describe its (dynamic) behaviour. See, e.g., the classical texts [45, 50, 66, 80] for an
elaborate exposition on the subject of free-surface flows. For the description of the
flow in viscous regions, the boundary-layer or the Reynolds-averaged Navier-Stokes
(RANS) equations are the proper mathematical models to consider. Within hydro-
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dynamic research institutes, such as MARIN?, numerical methods for both features
have matured well and are currently in routine use to assess hull designs. See,
for example, [31, 60] for a description of the viscous flow solver PARNASS0S? and
the free-surface potential-flow code RAPID3, respectively. PARNASSOS is a Navier-
Stokes flow solver which does not compute free-surface gravity waves. RAPID is a
free-surface-flow solver which does not compute viscous phenomena. This segre-
gated approach is based on the validity of Froude's hypothesis, which states that
the free surface and the viscous flow are only weakly coupled. However, to improve
the degree of realism of the computational method the mutual influence of wave
making and the viscous flow should be taken into account. This coupling of the free
surface and the viscous bulk flows can be achieved by computing waves and viscous
phenomena with a single flow solver: a Navier-Stokes solver which does allow for
free-surface gravity waves. The present thesis is directed towards the efficient com-
putation of two-fluid flows consisting of water and air, with as primary application
area: ship hydrodynamics.

Figure 1.1: Example of the complex two-fluid flow to be addressed in numerical ship hydrody-
namics (photo obtained from MARIN).

In an attempt to simulate the flow around a ship hull, it is imperative to re-
alize that the above mentioned phenomena do not possess the same length and
time scales. Depending on the length and time scales one is interested in, certain
assumptions are made. In this thesis, the emphasis lies on the development of a

1
2
3

www.marin.nl
www.marin.nl/original /services/softwaredevelopment/cph_parnassos.html
www.marin.nl/original /services/softwaredevelopment/cph_rapid.html
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single-fluid method which is capable of efficiently computing both the stationary
wave pattern and the corresponding viscous water-flow regions generated by a ship
traveling in still water. A computational method for two-fluid (water-air) flow is
also proposed and tested in this thesis, though not yet for ship hulls. The inherent
difficulty of free-surface flow problems is the interdependence of the free-surface
location and the unknowns of the flow. In the present work we neglect the influence
of the propeller, any effects of lifting surfaces, wave breaking or the formation of
spray.

In Section 1.2, the two basic techniques used in this thesis for the representation
of moving surfaces, i.e., the Eulerian and Lagrangean, are discussed. Section 1.3
gives an outline of this thesis, briefly introducing the topics of the various chapters.

1.2 Basic grid techniques

To compute a free surface on a computational grid, basically two techniques ex-
ist: (i) moving-grid or fitting (Lagrangean) techniques and (ii) fixed-grid (Eulerian)
techniques. In the first, the free surface forms part of the boundary of the com-
putational domain (the upper boundary in Figure 1.2a). In the second, the free
surface is not aligned with the grid, see Figure 1.2b. Because in the moving-grid
approach the free surface is a part of the boundary of the computational domain,
its resolution on the grid is crisp, but it is not necessarily accurate; its location and
topology may be poorly resolved. A moving-grid technique is not well-suited for the
computation of bifurcating free surfaces. In practice, it will already be unsuited for
free surfaces that are strongly distorted. Fixed-grid techniques may not suffer from
such drawbacks, but here the front may be diffused. Mixed Lagrangean-Eulerian
methods, which try to combine the best of the above two basic techniques, may
be constructed. An example of such a hybrid approach would be to overlay a fixed
grid with a narrow moving grid attached to the free surface (Figure 1.2c). Such
complex combined grids, however, will not be considered in this thesis. We proceed
by considering moving- and fixed-grid techniques in more detail.

SRmIIRE

i
/ &

a. Moving b. Fixed c. Hybrid

Figure 1.2: Types of grid techniques for computing free-surface flows.
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1.2.1 Moving-grid techniques

A common approach in moving-grid techniques is to describe the free surface as a
height function, say as h(x,t) : R x R* — R, with d = 1 (Figure 1.3) or d = 2.
Some references to free-surface height methods are [23, 53, 60]. It is common use
to do the calculation of the free-surface height alternately with that of the bulk
flow, the so-called partitioned approach, a reason being that in case of a single-
valued height function, the free-surface-flow problem is one dimension lower than
the bulk-flow problem. Methods that compute the height function and the bulk
flow simultaneously do exist though, see, e.g., [6]. Such methods follow what is
called the monolithic approach.

y
A

Figure 1.3: Free-surface height h.

The number of conditions to be imposed on the free-surface boundary is one more
than on a fixed surface; it is equal to the usual number for the bulk flow (d conditions
for the full incompressible Navier-Stokes equations in R%, e.g.) plus one extra for the
height function. For free-surface-flow problems as occurring in ship hydrodynamics,
the free-surface is a material surface and, hence, allows no mass transport through
it, i.e., u-n = 0, where n is the free-surface (unit) normal. It is furthermore
assumed that the stresses at the free surface vanish. Imposing these conditions in
a physically correct way is of paramount importance for a good resolution of the
free surface and is not trivial. One subtlety in case of, e.g., steady free-surface
water waves is that these are known to satisfy a dispersion relation (Chapter 3
in [50]), which uniquely relates the length of the free-surface wave to the Froude
number. ldeally, in the discrete case, this dispersion relation should be satisfied as
well. Another point of attention is the ‘contact-line’ problem, i.e., the intersection
of the free surface and a no-slip boundary; an example of this is the water line at a
ship's hull. Here, the difficulty is that in the unsteady case the free-surface and the
no-slip boundary conditions do not match.

Because the grid may strongly distort during the free surface’s motion, dis-
cretization of the flow equations in the computational domain is more appropriate
than discretization in the physical domain. As a consequence it is harder to build
in physics at a low discretization level because of the more intricate equations (due
to the metric terms).
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For steady free-surface-flow problems, a common ‘partitioned’ solution approach
with the free-surface-height method is the following two-step process:

1. Solve the steady bulk-flow equations (the full Navier-Stokes equations, e.g.)
with the free surface frozen and with — consequently — one free-surface con-
dition not imposed.

2. On the basis of the previously obtained bulk-flow solution, correct the free
surface such that it (better) satisfies the free-surface condition not imposed
in the first step.

If not all equations are sufficiently satisfied, return to step 1.

A pitfall in making this solution process efficient is to make both steps efficient
separately, ignoring their interaction. This holds in particular for step 2: introduc-
ing large free-surface updates may hamper or even ruin the bulk-flow problem’s
convergence to a steady state. For that reason, the rule mostly followed in steady
free-surface flow computations is to carefully time-march the unsteady free-surface
and bulk-flow equations to a steady state. However, because of the persistent un-
steady free-surface-flow phenomena, this evolutionary approach is not efficient at
all. In [59], still following the abovementioned two-step process, an efficient method
is proposed for solving the steady free-surface flow (step 2) while keeping the in-
duced perturbations in the bulk-flow computation (step 1) small. The key lies in the
implementation of the free-surface conditions: in [59], a so-called quasi-free-surface
condition is proposed. For smooth, single-valued free surfaces, this method appears
to work perfectly well [14, 15, 59]. However, when steepening the water waves, as
expected, its performance deteriorates and finally breaks down.

In case of unsteady free-surface flows, the technique of alternately updating the
bulk flow and the free surface may be followed as well. However, in general this
subcycling approach is only first-order accurate in time, independent of the accura-
cies of the separate time integrators for bulk flow and free-surface flow. (Evidence
for this, in the application area of fluid-structure interactions, is given in [58].)

Fixed-grid methods hold out the promise of resolving a much larger class of
free-surface flows and — also — of not suffering from a time-accuracy barrier in the
unsteady case. In the next section, we consider some pros and cons of fixed-grid
techniques.

1.2.2 Fixed-grid techniques

In the Eulerian approach, since many years, some well-proven techniques exist for
computing flows with free boundaries. A classical method is the Marker-and-Cell
(MAC) method [27]. Here, one of the two fluids is seeded with massless particles,
that are passively advected with the flow. A grid cell without any particle is defined
to be a cell fully filled with the other fluid (possibly void) and the free surface(s)
may be defined as the set(s) of cell faces separating the cells with particles from
the cells without, or — more accurately — as the tight contour(s) wrapped around
the particles such that no cell without particles is closed in (Figure 1.4a). Flow
bifurcations cause no difficulties for the MAC method. A deficiency though is that
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no clear distinction can be made between physical and numerical cavitation (Figure
1.4a: empty cell at the bottom of the fluid). To avoid this uncertainty, the rule is
to seed the fluid with as many particles as possible. Doing so, particularly in 3D,
the MAC method may become very expensive.

A more efficient fixed-grid method is the Volume-of-Fluid (VOF) method [30].
In it, per grid cell, in addition to the standard fluid-flow quantities such as velocity
and pressure, a scalar quantity is introduced, which represents the fraction of that
cell, denoted by a(x,t) : R? x R* — [0, 1], that is filled with one of the two fluids:
the VOF fraction (Figure 1.4b). The fraction is transported (in the incompressible
case) by means of the advection equation for a(x,t), i.e.,

%—?—i—u-Va:O. (1.1)
The location of the free surface can be defined in a similar way as in the MAC
method, viz. as the set of cell faces separating the cells with the VOF fraction larger
than zero from the cells with the VOF fraction equal to zero, or — more accurately —
at the subcell level. The latter requires intricate flux algorithms, particularly in 3D.
A principal drawback of the VOF method is that the VOF fraction is non-smooth
and — hence — hard to accurately resolve in precisely the region of interest: at the
free surface.

A natural fix is to replace the VOF fraction by a smooth scalar function, which
represents, e.g., the distance to the free surface. Doing so, the free surface is simply
defined as the zero-level iso-surface. This is known as a level-set method (Figure
1.4c). Text books on level-set methods are [54, 65], a classical journal paper is
[52]. Older work in which the technique is already found, though not yet under the
name of level-set technique, is that by Markstein on flame propagation. See, e.g.,
[51], in which a flame front is represented by a higher-dimensional, differentiable
function that is advected by the flow. Since last decade, level-set methods enjoy
many publications, a list related to CFD only is [4, 8, 13, 18, 19, 20, 22, 28, 32,
41, 44, 57, 68, 69, 70, 83, 84]. When computing the flow of a single fluid with
free surface, i.e., a flow with material-void interface, a minor problem of level-set
methods is that no velocity field is defined in the void region. Hence, to guarantee
smoothness of the level-set function, a proper artificial velocity field in the void
region needs to be defined. This difficulty may also be seen as a good opportunity
though to improve the free boundary’s resolution without being inhibited by physics.
E.g., in the void region an artificial velocity might be chosen which counteracts the
effects of numerical diffusion by anti-advection [1, 44].

Keeping the level-set function smooth forms a point of attention. During the
computation, the function may need to be regularized. In this reinitialization step,
care needs to be taken that the free-surface location is preserved.
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Figure 1.4: Known types of fixed-grid techniques for computing free-surface flows.

Using an MAC, a VOF or a level-set method, free-surface boundary conditions
can be imposed at all cell faces separating the two fluids or — alternatively — at the
subcell level. With a level-set method, the latter can be done more accurately than
with the VOF method, but is still intricate, particularly in 3D. In [38], the approach
of imposing free-surface conditions in the interior of the computational domain is
called tracking. The free surface is genuinely free when it is captured (i.e., when
no conditions at all are imposed on it). In capturing methods, in principle, the free
surface is a two-fluid interface (with one fluid possibly virtual). The challenge of
capturing methods is to choose or devise a physically correct two-fluid flux formula
to be applied at the low discrete level of cell faces. A specific, well-known problem
of capturing (not of tracking and fitting) techniques is that large solution errors
may occur near the interface: the so-called ‘pressure-oscillation problem’, which
has been observed first by Karni [35] and Abgrall [2]. In literature, several remedies
against this have already been proposed.

As mentioned, both tracking and capturing can be combined with the MAC, the
VOF as well as the level-set method. As compared to the surface-height method,
with the MAC, VOF and level-set methods, computational overhead is introduced
by the representation of the n-dimensional free surface as an (n + 1)-dimensional
set of particles (MAC) or function (VOF and level-set). When computing a single-
fluid flow problem with free surface by a capturing technique, even more overhead
may be introduced by the computation of the flow of the virtual secondary fluid.
Of course, the overhead should be and can be minimized. Possibly still remaining
overhead is expected to be counterbalanced to a sufficient degree by the advantages
of capturing: no remeshing, no limitation with respect to free-surface topologies,
no free-surface boundary conditions to be imposed (the dispersion relations in case
of water waves under the action of gravity, e.g., will be satisfied automatically), etc.
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1.3 Outline

This section describes the main content of this thesis and can serve as a quick
reference for the outline of each chapter. The thesis can be divided into two parts:
Part A, consisting of Chapters 2 — 5 and containing the results of research on a
fitting method, and Part B, consisting of Chapters 6 — 8 and containing the results
of work done on a capturing method.

1.3.1 Part A: fitting method

Chapter 2 serves as an introduction to the free-surface fitting method which is
investigated in this thesis. It contains a detailed description of the free-surface
iteration method, based on the quasi free-surface condition. This iteration method
requires the solution of a number of incompressible RANS boundary-value problems.
The discretization and solution method of the RANS method are also described. The
two topics of this chapter are (i) the extension to 3D of the existing 2D free-surface
iteration method, described to full extent in [12], and (ii) the further improvement
of the convergence of this iteration method. The convergence behaviour of the
method is investigated by computing the free-surface and bulk flow for a problem
in which a pressure perturbation is imposed on the free surface. Variation of the
strength of the perturbation changes the nonlinearity of the resulting wave pattern.
Various amplitudes of the perturbation are considered. This chapter has originally
appeared as [47] and various separate results have already been published in [48, 49].

In Chapter 3 the perturbed uniform flow test case of Chapter 2 is extended by
inserting a flat plate with unit length into the flow. The presence of the flat plate
induces a boundary layer and a wake. The computation of this boundary layer and
wake requires a non-uniform mesh. Two types of non-uniform meshes are considered
here, namely the piecewise-uniform mesh, with as its known variant the Shishkin
mesh, and the exponentially stretched mesh. The aim of this chapter is to establish
the accuracy and convergence of our iterative method on the piecewise-uniform
mesh in comparison with those on the more familiar exponentially stretched mesh.
A mesh width variation and a Reynolds number variation are considered. The work
done in this chapter has been presented by the author in an invited lecture at the
Workshop on Numerical Methods for Singularly Perturbed Differential Equations,
held at the Department of Mathematics and Statistics of the University of Limerick
(Ireland) in 2002.

In Chapter 4 the free-surface iteration method, introduced in Chapter 2, is used
to compute a ship hydrodynamics problem, i.e., the computation of the shape of the
free surface, including the underlying bulk flow, generated by a Series 60 type hull
traveling at a certain speed. A part of the results from this chapter has appeared
in [49].

In Chapter 5, the fitting approach, investigated and further developed in Chap-
ters 2 — 4, is analyzed with respect to (i) the existence of steady free-surface waves
and (i¢) the dispersion properties of these waves for two different discretizations of
the quasi free-surface condition. The analysis is done for the exact Navier-Stokes
equations (both full and reduced), as well as for the modified Navier-Stokes equa-
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tions (only reduced). The modified equations correspond with the discretization
method applied in Chapters 2 — 4. The analysis makes use of linearized equations,
a Fourier technique, and the assumption of infinitely deep water and periodicity in
mainstream direction. The analysis leads to a remarkable difference between the full
and reduced Navier-Stokes equations, and yields a requirement for the existence of
steady waves for the latter equations. Further, it explains the dispersion behaviour
of the free-surface waves, as observed in our numerical results.

1.3.2 Part B: capturing method

Chapter 6 is based on [42]. In this chapter we derive a system of hyperbolic conser-
vation laws for (still) compressible water-air flow, using a bulk-density formulation.
As the equation of state for the two fluids, Tait's equation is used. Another equation
to be specified describes the location of the interface. The level-set method is used
for this purpose. Application of a finite-volume discretization leads to a Riemann
problem at each finite-volume wall. For the (approximate) solution of this, we derive
a two-fluid linearized Godunov scheme.

In Chapter 7 we continue the analysis of two-fluid flow problems and in particular
the advection of a contact discontinuity separating two compressible and immiscible
fluids. Also in this case the two fluids represent water and air. It is shown that
already the trivial flow problem of a water-air interface running through a tube
at constant speed and pressure poses considerable difficulties for most numerical
schemes. Most numerical schemes suffer from the pressure-oscillation problem, i.e.,
an O(hY) accurate, non-monotone behaviour of the pressure across a contact dis-
continuity. An analysis is presented which uncovers the origin of this phenomenon.
Several fixes for this zeroth-order accuracy problem are numerically investigated.
Based on the numerical results we select the ghost-fluid method as object for fur-
ther study. This chapter has appeared as [43] and a condensed version of Chapters
6 and 7 also appeared as [41].

In Chapter 8 the hyperbolic system, proposed in Chapter 6, is extended with
a source term. This source term is added to represent the effect of gravity. An
analysis of the non-homogeneous system of equations is presented. Next, the system
of equations is homogenized. An analysis of the homogenized equations leads to
an elegant numerical method (a splitting method) valid for small time steps. As far
as we know, this method is new. Numerical experiments are performed computing
the flow in a tube with two fluids, e.g., water and air, driven by the gravity force.
The discretization method is the finite-volume method where the linearized Godunov
scheme, derived in Chapter 6, is applied as approximate Riemann solver. The ghost-
fluid method is used to resolve the solution in a cell containing the interface. These
results have been published in [40].
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CHAPTER 2

Efficient Computation of Steady, 3D
Water-Wave Patterns

2.1 Introduction

In the case of a smooth free surface without overturning waves, i.e., when the
free surface can be represented by a height function, surface-fitting methods are
unsurpassed in accuracy. Because our primary focus is on the computation of non-
overturning gravity waves, this method is adopted here.

The main topic of this chapter is the investigation of the convergence behavior
for 3D problems, of a new non-monolithic (i.e., an alternating or partitioned) free-
surface iteration method, proposed in [59] and worked out in [15] for 2D flows. In
[11, 15, 59], the so-called quasi free-surface boundary condition is derived. In the
present chapter, this boundary condition is extended to 3D and the free-surface
iteration method is applied to a test case involving stationary gravity waves induced
by a pressure perturbation imposed at the free surface of a 3D water flow with
a depth d > ), the so-called waves on deep water, where )\ is the free-surface
wavelength. Varying the amplitude of the perturbation alters the nonlinearity of
the resulting wave system. Each step of the free-surface iteration method involves
the solution of a stationary Navier-Stokes boundary-value problem. In an improved
version of the free-surface algorithm, the Navier-Stokes equations are not fully solved
per free-surface iteration, but only corrected through a single relaxation sweep. The
numerical results are compared with a solution of the potential-flow method from
[60].

The contents of this chapter are the following. In Section 2.2, the governing
equations are introduced. Section 2.3 describes the computational method, in par-
ticular the stationary Navier-Stokes boundary-value problem which is solved in each
free-surface iteration step. In Section 2.4, various numerical results are presented
for the free-surface algorithm. In Section 2.5, the aforementioned improvement is
made to the algorithm and corresponding numerical results are presented. Section
2.6 concludes this chapter.
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2.2 Governing equations and free-surface conditions

In this section an outline is given of the mathematical model which describes viscous
free-surface flows. The first subsection lists the equations which describe the fluid
flow, the next subsection treats the free-surface conditions and the last the so-called
quasi free-surface (boundary) condition.

2.2.1 Flow equations

Let Q C R? be the physical domain which is occupied by an incompressible, viscous
fluid and let us split the domain boundary as 902 = I'psUI'y, where I'rg denotes the
free surface and Ty the remaining (fixed) part of 9. Positions in R? are identified
with respect to a Cartesian coordinate system e,, a = {z,y,z} with g = —ge,
denoting the gravity force. The state of the flow is characterized by the velocity
field u(x) : © — R? and the pressure p(x) : © — R. Incompressibility implies a
solenoidal velocity field:

V-u=0, Vxe. (2.1)

Conservation of momentum of the fluid is described by
V- (uu") +Vp -V (e(x) (Vu+Vu’)) =0, vxeq, (2.2)

where £(x) = Re™! + 14(x) the viscosity parameter with Re = U{/v the Reynolds
number and v4(x) the turbulent eddy viscosity. Furthermore U and ¢ are the refer-
ence speed and length and v is the kinematic viscosity. In this chapter we assume
laminar flow, herewith setting v1(x) = 0. The unknown ¢ is the hydrodynamic
pressure

p(x) = p(x) + Fr 2z, (2.3)

which contains the second similarity parameter in viscous free-surface flows, the
Froude number, Fr = U/\/gl, with g the acceleration of gravity. It is assumed that
diffusion in main-flow direction, say the z-direction, can be safely neglected. As
a result the viscous operator, on an orthogonal mesh and for a spatially invariant
eddy-viscosity, reduces to A = 813 + 83, which in turn reduces the number of
boundary conditions to be imposed at the x-outlet boundary.

2.2.2 Free-surface conditions

The free-surface (boundary) conditions follow from the general interface conditions
and the assumptions that both density and viscosity of one of the adjacent fluids
vanish at the interface and that the interface is impermeable. In many applications
of interest, especially in those which admit steady solutions, the free surface can
be expressed as a single-valued height function n(z,y) : R x R — R, denoted as
Ips = {(x) : (z,y,2 = n(x,y))}. Impermeability leads to the kinematic condition

u-Vnp=u-e,. (2.4)
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This formulation imposes smoothness restrictions on the shape of the free surface.
Vanishing interfacial stresses result in three dynamic conditions, namely

Ju
_9Re 12 — 25
p(x) € on prs(x), (2.5)
in the direction normal to the free surface, with prg(x) the specified pressure per-
turbation along the free surface, and

tY 7(u) n=0, a=1,2 (2.6)

tangential to the free surface, where 7(u) is the viscous stress tensor for an in-
compressible fluid. Here n and t® (o = 1,2) are the unit normal vector and the
orthonormal tangential vectors, respectively. For the practical application envisaged
here, the viscous contribution to the normal dynamic condition may be neglected,
resulting in an inhomogeneous Dirichlet condition for the pressure p(x). It has been
assumed that surface tension effects can be safely ignored.

2.2.3 Quasi free-surface boundary condition

In free-surface flows, an interdependence exists of the state variables (u(x), p(x))
and their spatial domain, through both the kinematic and dynamic conditions. In
general, the free-surface flow problem is stated by equations (2.1), (2.2) subject
to (2.4)—(2.6) on I'pg, together with additional boundary conditions on I'y. Many
concurrent free-surface iteration methods apply a formulation in which they first
solve (2.1), (2.2), in time-dependent form, subject to the dynamic conditions at an
approximate location of the free surface. In the following step, they adjust the free
surface using the kinematic condition in time-dependent form. Results obtained with
these methods can be found in, e.g., [5, 17] for the fully time-dependent approach
and in, e.g., [23, 76] for pseudo-time integration and quasi-steady methods.

Here we apply a different free-surface iteration method based on the use of the
quasi free-surface boundary condition which, in steady form yields

u-Vyo—Fr2u-e, =u-Vps. (2.7)

The derivation of this boundary condition in unsteady form, for ppg = 0, can be
found in [15]. Here, we will only employ the quasi free-surface condition in its steady
form (2.7). Use of the quasi free-surface condition has the advantage that it does
not decouple the kinematic and dynamic free-surface conditions. In fact, it is the
combination of these kinematic and dynamic conditions which yields the wave-like
solutions. The widely used counterpart of (2.7) is the kinematic boundary condition
(2.4) in its unsteady form:

nw+u-Vnp=u-e,. (2.8)

Use of this condition forces the flow equations to be in unsteady form, which may
be principally unwanted for flows which are known to be steady. Moreover, it has
been shown that the usual time integration method to solve for steady state is
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computationally inefficient. This is due to the fact that the attenuation of gravity
waves behaves like O((t('=%/2)) in R?, see [15]. This is the main reason for directly
addressing the steady formulation of the continuous problem. In this manner we
circumvent the unfavourable temporal behaviour.

2.3 Computational method

In Section 2.3.1 we outline our iterative solution method for gravity-subjected free-
surface flows. It requires the solution of a sequence of steady-state Navier-Stokes
subproblems. A description of the latter is given in Section 2.3.2.

2.3.1 Free-surface iteration method

Denoting (2.1) and (2.2) as NS(u(x),¢(x)) = 0, and the boundary conditions
to be imposed at Ty as B(u(x),p(x)) = 0, the solution of the free-surface flow
problem can be found by iterating the following two steps:

I. For a given boundary T'pg, solve (u(x), ¢(x))7 from

=0, VxeQ,
B(u(x), p(x)) =0, vx €Ty,

t.7(u)-n=0 a=1,2

I'rg.
u-Vo—Fr2u-e, =u- Vpps }’ vx € I'es

If |lp — prs|| > ers, where epg is a suitably chosen small tolerance, then do
step Il, else stop.

Il. Use the solution (u(x),¢(x))T of | to obtain a new approximation of I'pg
according to

{(z,y, 2 = Fr’(p(x) — prs(x)) : Vx € Trs}, (2.11)
next return to step I.

Note that at convergence p = prs.

2.3.2 Discrete Navier-Stokes boundary-value problem

The free-surface iteration method of the previous section requires the solution of
the reduced Navier-Stokes boundary-value problem mentioned in step |. The dis-
cretization of this boundary-value problem is outlined first.

Discrete flow equations

Let €2}, be the orthogonal and equidistant partitioning of Q, with x = (iAx, jAy, kAz).
On Qj, we denote a grid function f(iAz, jAy,kAz) by fi ;. At all grid points,
both in the interior and at the boundaries, the derivatives are replaced by finite
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differences as specified below. As mentioned, z is associated with the main-flow
direction. In the continuity equation the first-order velocity derivative in the main-
flow direction is discretized using an O(h?) upwind-difference scheme with fixed bias
contrary to the first-order velocity derivative in the momentum equation which is
upwind biased. The remaining first-order velocity derivatives in the continuity equa-
tion and the momentum equations are discretized using an O(h3) upwind-biased
difference scheme with a fixed bias for the continuity equation. The pressure gra-
dient is discretized using an O(h®) downwind-difference scheme with a fixed bias.
The opposite biasing of the velocity divergence and the pressure gradient ensures
discrete ellipticity, herewith avoiding ‘odd-even decoupling’ of the solution [31].
The second-order velocity derivatives are discretized with standard, second-order
accurate central differences. In formula, the discrete continuity equation reads

D ui gk + Dy vij ke + D wijr =0, (2.12)
and the discrete momentum equations, for positive u; j 1, Vi j 1 and w; ; i:

Ui g,k Dy Wi gk + Vi Dy wi g + wi g e D7 wi g0 +

Dfijk—Re " (Diuijk + D2uijx) =0, (2.13a)

Ui g,k Dy ik + Vi e Dy Vi + Wik D2 vi gk +

D} oijr—Re™ (D2vijx + D2vi i) =0, (2.13b)

Wi j,k Dy wi g + 03Dy wi j e + wi D2 wi ke +

D} gijr—Re " (Dlwijk + D2w;jx) =0, (2.13c)
where D? represents the following discrete differential operators
1 /3 1
D =— |(=E'—2E; '+ _-E2 2.14
1 /1 1 1

D= — _E+1 _EO _ E_l _E_2 = 214b
c=ag (FEOFGEES EgE) . o=kl ()
pr—t (Clp1_1po + B - Lgre a={x,y, 2} (2.14¢)

“ T Aa\ 3T 27 T g )7 b '

1

D? = o (EX'—2E)+ EJY), a={yz}, (2.14d)

with the linear shift operator E’ defined as Eu; j 1k := Uitn,j k-

Computational domain and boundary conditions

In R¢, a full incompressible Navier-Stokes problem requires d boundary conditions
on all boundary planes. Due to the reduced viscous operator, only one boundary
condition may be imposed at an outlet boundary perpendicular to the z-direction.
All other boundary planes require d boundary conditions, hereafter referred to as
physical boundary conditions.
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Physical boundary conditions The computational domain is defined by 0=
{(z,y,2) : [Tin, Tout] X [0,9e] X [25,m]}. At the boundaries of (2 we impose the
following conditions:

e Inflow boundary (z = z;,). At this boundary three Dirichlet conditions are
imposed in the form of specification of the velocity components, i.e.

u = (Us,0,0)T. (2.15)

e Outflow boundary (z = x,,;). Here an inhomogeneous Neumann condition
is imposed on the hydrodynamic pressure, viz.

Qo + uty = 0. (2.16)

e External boundary (y = y.). Dirichlet conditions are imposed on the tan-
gential velocity components u and w, and on the hydrodynamic pressure :

u=Us, w=0, ¢=0. (2.17)

e Internal boundary plane (y = 0). The internal boundary is taken as a
symmetry boundary. Homogeneous Neumann conditions are imposed on the
tangential velocity components and a likewise homogeneous Dirichlet condi-
tion on the normal velocity component:

ou ow
— =0, v=0, —=0. (2.18)
dy dy

e Bottom (z = z;,). Also here, homogeneous Neumann conditions are im-
posed on the tangential velocity components, in this case u and v, and a
homogeneous Dirichlet condition on the normal velocity component:

ou Ov
— =0, —=0, w=0. 2.19
az ) 82 ) ( )

e Free-surface boundary (z = 7). At the free surface the following set of
boundary conditions is imposed. Vanishing of the tangential stress compo-
nents at the free surface results in

ou Ov
— =0, — =0, 2.20
on on ( )
with n the normal to the free surface. Further, a Gaussian pressure perturba-
tion with the following form is prescribed:
prs(z,y) = Pe(@=z)*+s—v)®) - p S o <. (2.21)

The location (z,y.) of the maximum pressure, as well as the parameters P
and o may be varied. Substituting (2.21) into the quasi free-surface boundary
condition (2.7) leads to

u-Vo—Fr2u-e, =2apps(x)(u-1), r=(—2c,y—ye0)7. (222)

Note the nonlinearity of the quasi free-surface boundary condition.
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All Neumann boundary conditions are discretized using O(h?) one-sided differences.
The pressure gradient in the quasi free-surface boundary condition is discretized
using an O(h?) upwind-difference scheme.

Numerical boundary conditions Because the discretization stencils extend be-
yond the boundaries of the computational domain, for the numerical solution proce-
dure, numerical boundary conditions are required (for filling the virtual grid points
outside the computational domain). For this purpose, quadratic solution extrapo-
lation from the interior is applied.

Solution method

The discretized equations form a system of nonlinear algebraic equations, which is
solved by the SOR-Newton method. The sparsity pattern of the resulting linear
algebraic system favors an iterative solution method over a direct method. The
linear system is solved by adopting a space-marching Gauss-Seidel algorithm in
which the marching is performed in the main-flow direction (the z-direction). This
approach is natural in view of the strong parabolic nature of the flow equations. A
particular feature of this solution method is that the system of equations is solved
in a coupled manner. This approach avoids the use of an artificial-compressibility
method or a SIMPLE-type algorithm.

The space-marching procedure yields a size reduction of the linear-algebra prob-
lem. The smaller linear systems are solved using a CILU(0) preconditioned Krylov-
subspace method (GMRES). The search space for the Krylov method is limited to
20 vectors. The convergence criterion for the solution of the inner (Newton) iter-
ation process is that the residuals of the bulk flow have all dropped below some
very small threshold value. More details on the solution strategy of the system of
algebraic equations are given in [31, 77]. The method has been implemented in the
computer code PARNASS0S

2.4 Numerical results

In this section we present some numerical results obtained with the free-surface
iteration method described in the previous section.

2.4.1 First results

As a first test case we consider the following parameter values for the Gaussian
pressure perturbation (2.21): P = 0.05, « = —4, Fr = 0.6 and (z.,y.) = (0,0).
This is conform to computations done with the potential-flow method described in
[81]. Re is set at 10°. The current computation is performed on the basis mesh,
Qp, which has 81, 31 and 31 nodes in the z-, y- and z-direction, respectively. 2},
is constructed such that the Kelvin wedge, which bounds the spatial distribution of
the wave energy, does not intersect the external boundary by taking z,, = 6 and
ye = 3. The wedge makes a semi-angle of 19.5° with the main-flow direction. (See
Section 3.10 in [50] for a derivation of this result.) Other boundary coordinates
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chosen are x;;, = —2 and z, = —3. For all computations, the initial estimate of the
free surface is the plane z = 0.

As mentioned before, our focus is on the convergence behavior of the new free-
surface iteration method. We distinguish two iteration processes: an outer- and an
inner-iteration process, the iteration processes Il and |, respectively, as described in
Section 2.3.1. The convergence of the outer iteration, the free-surface method, is
measured through the pressure defect at the free surface. The convergence of the
inner iteration, the Navier-Stokes method, is measured by computing ||R|| oo, where
R is the residual vector of the flow equations (2.12),(2.13). For the present test
case, the convergence behavior of the inner iteration is shown in the left graph of
Figure 2.1.

10°

SRS

| ] 4 | |
50 100 150 10 1 2 3

Figure 2.1: Convergence histories for the Gaussian pressure perturbation with P = 0.05, on
Qp. Left: of the inner-iteration process, R is the residual of the continuity equation (A), the
z-momentum equation (O), the y-momentum equation (), and the z-momentum equation (V),
only every fourth marker is shown. Right: of the free-surface pressure defect; measured in L1-norm
(0), La-norm (A), and Loo-norm (O).

The two large jumps in the residual (at about n = 40 and n = 80) are due to free-
surface updates. Figure 2.1 reveals that the inner-iteration process on the mesh
obtained after the third free-surface update starts to oscillate with an increasing
amplitude, preventing further decrease of the residuals. A closer inspection has
shown that these residuals occur at a location near the outflow boundary, in the
first grid plane underneath the free surface. This indicates a local incompatibility
between the free-surface flow and the underlying bulk-flow solution. The proposed
remedy will be addressed in the next section. The convergence of the free-surface
iteration process is monitored through the pressure defect ||p™ — prs||, measured in
some usual norms. Here p™ = " —Fr=22" is the hydrodynamic pressure minus the
hydrostatic part. The decrease in the pressure defect is shown in the right graph
of Figure 2.1. The free-surface iteration appears to converge very fast; the second
and third free-surface updates are already negligibly small as compared to the first,
as can be seen in the left graph of Figure 2.2.
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Figure 2.2: Wave elevations in the plane y = 0 for the Gaussian pressure perturbation with
P = 0.05. Left: of the present free-surface Navier-Stokes method on y,; initial (¢ =0), n =1
(dotted), n = 2 (dashed), and n = 3 (solid). Right: of the potential-flow method from [60] (solid)
and the present Navier-Stokes method (dotted).

In Figure 2.2, { = 1/Nmaqs is the wave elevation divided by the maximum obtainable
elevation Npar = FTYQ The last iterate in the left graph of Figure 2.2 shows a
wavelength of A = 2.3 and a maximum scaled amplitude of about 15%. These
results correspond fairly well with the results obtained through the potential-flow
method described in [81]. For further comparison purposes a solution for this test
case has also been computed through the potential-flow method described in [60].
The corresponding wave pattern is shown in the right graph of Figure 2.2, together
with the present Navier-Stokes solution (the dotted line). Differences between both
wave patterns are to be attributed to differences in the two continuous models and,
particularly, to differences in their numerical discretizations. In Figure 2.3 we still
show the entire Navier-Stokes wave pattern as obtained after the third free-surface
update.
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Figure 2.3: Wave elevation for the Gaussian pressure perturbation with P = 0.05, on Qj,, after
three free-surface updates.

2.4.2 Influence of outflow boundary condition

The starting divergence of the inner iteration on the third mesh, as shown in Figure
2.1, is due to an incompatibility between the free-surface flow solution and the
underlying bulk-flow boundary condition at the outflow boundary. This discrepancy
can be overcome by extending €2, with a far-field wave-dissipation zone and a
transition zone in between (see, e.g., [33, 36]). The wave-dissipation zone is added
to rapidly dissipate all the wave energy from the numerical solution, hereby reducing
the solution to uniform flow conditions.

The wave energy is better dissipated by increasing the numerical viscosity. This
is achieved by (7) reducing the accuracy of the discretization of (2.7) in the wave-
dissipation zone to first order, and (ii) by applying grid stretching in the wave-
dissipation zone. The grid-point distribution in the wave-dissipation zone is con-
trolled by

Tz Ay -
T = xouteamﬁﬁz, yj = yee® el i=1,..., (No)aqa> F=1roos (Ny)aq>
(2.23)
where « is the stretching factor in 2- and y-direction, and where (N,), 44 and
(Ny),qq are the numbers of additional points in both directions. Both numbers are
fixed by specifying the maximally allowable mesh width, e.g., |z (n,) —x(Nm)add,ﬂ
is set at 0.5. The same is done for the y-direction. The extended mesh has
149 x 53 x 31 points, and is denoted by Q.. In absence of a wave solution near
the outflow plane the incompatibility between the free-surface flow and the bulk
flow disappears and, instead of (2.16), a homogeneous Neumann condition for the
pressure can be specified as outflow boundary condition.
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On this extended domain €2, we compute five free-surface updates. The positive
influence of the wave-dissipation zone on the convergence behavior of both the inner
and outer iteration can be seen when comparing Figure 2.4 with Figure 2.1.

100 10°

Figure 2.4: Convergence histories for the Gaussian pressure perturbation with P = 0.05, on
Q. Left: of the inner-iteration process, R is the residual of the continuity equation (A), the
z-momentum equation ([J), the y-momentum equation (), and the z-momentum equation (V),
only every fourth marker is shown. Right: of the free-surface pressure defect; measured in Lj-norm
(d), La-norm (A), and Lo-norm (Q).

Note again the jumps of ||R|~ after each free-surface update. These jumps
are due to the fact that after each free-surface update the preconditioner, used in
solving the stationary Navier-Stokes boundary-value problem, is reinitialized, i.e.,
its coefficients are set to zero. The effect of not reinitializing the preconditioner is
studied in the next section.

In Figure 2.5, we show the entire wave pattern as obtained after the fifth free-
surface update. The wave damping in the dissipation zone, which starts at x = 10,
is clearly visible.
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Figure 2.5: Wave elevation for the Gaussian pressure perturbation with P = 0.05, on Qh, after
five free-surface updates.

In Figure 2.6, we still depict the elevations after the first and fifth free-surface
update, in the planes y = 0 and y = 2. Particularly from the left graph in Figure
2.6, it appears that the free-surface iteration converges very fast. (The initial
estimate for the free surface is { = 0.) Note that, as opposed to the first iterate in
the left graph of Figure 2.6 and as opposed to the three iterates in the left graph
of Figure 2.2, the free surface in the symmetry plane, as obtained after the fifth
update, shows a small trough at about x = —1. The trough can still be observed
at y = 2 (the right graph of Figure 2.6).
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Figure 2.6: Wave elevation for the Gaussian pressure perturbation with P = 0.05, on Qh; n=1
(dotted) and n = 5 (solid). Left: In the plane y = 0. Right: In the plane y = 2.

In Figure 2.7 we show our Navier-Stokes wave patterns in the symmetry plane, as
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obtained on the domains with and without wave-dissipation zone. For comparison
purposes, in Figure 2.7 we also give the wave pattern obtained with the potential-
flow method described in [60]. Differences between the two Navier-Stokes wave
patterns in Figure 2.7 may be attributed mainly to the fact that the solution on
the domain without wave-dissipation zone is less far converged than that on the
domain with wave-dissipation zone. Still concerning Figure 2.7, note the strong
wave damping starting from z = 10, the xz-coordinate of the upstream boundary of
the wave-dissipation zone.
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Figure 2.7: Wave elevation in the plane y = 0 for the Gaussian pressure perturbation with
P = 0.05; present Navier-Stokes method, on €, and Qh (solid and dotted, respectively), and
potential-flow method from [60] (dashed).

2.4.3 Influence of preconditioning

The convergence of |R|| reveals a jump after each free-surface update. It has
been stated in the previous section that this is due to the reinitialization of the
preconditioner, used to solve the stationary Navier-Stokes boundary-value problem.
This section investigates the effect on the overall convergence behaviour of not
reinitializing the preconditioner. The convergence behaviour, without reinitializa-
tion, is shown in Figure 2.8. Comparing Figures 2.4 and 2.8 reveals the benefit. In
the remainder of this thesis the preconditioner is no longer reinitialized. The conver-
gence rate of the pressure defect decreases after the second free-surface update, i.e.,
starting from nyyuser = 3. It has to be noted that the norm of the free-surface pres-
sure defect is taken over the whole free surface, i.e., including the wave-dissipation
zone. An investigation of the spatial distribution of the pressure defect shows that
this is concentrated in the latter area. Since we are only interested in the solution
on €2, we may take the norm over this area only. Doing so, the convergence of the
outer iteration shows a rapid decrease, see Figure 2.9. From Figure 2.9 it may be
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concluded that the free-surface flow problem is solved after the second free-surface
update, to within the accuracy ey g specified in the software. Unless indicated oth-
erwise, in the remainder of this chapter, the convergence of the inner and outer
iteration is always measured over the entire computational domain, i.e., including
the wave-dissipation zone.
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Figure 2.8: Convergence histories for the Gaussian pressure perturbation with P = 0.05, on
Q. Left: of the inner-iteration process, R. is the residual of the continuity equation (A), the
z-momentum equation (O), the y-momentum equation (), and the z-momentum equation (V),
only every fourth marker is shown. Right: of the free-surface pressure defect; measured in L1-norm
(8), La-norm (A), and Loo-norm (O).
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Figure 2.9: Convergence history of ||p — prg|| for the Gaussian pressure perturbation with

P = 0.05, Flow computation on y,, but ||p — prs|| measured on Qy, in Li-norm (), La-norm
(A) and Los-norm (Q).

2.4.4 Mesh-width study

In this section, the effects of the mesh width on the convergence and accuracy
of the solution are investigated. This is done by comparing the numerical results
obtained for Qh with results obtained for Qgh and Q%. (To reduce the influence
of the outflow-boundary condition a wave-dissipation zone is added to each of the
three grids.)

Convergence behavior of inner and outer iteration The convergence of the
inner iteration on o, and Q% is shown in Figure 2.10. It appears that the strategy
for the solution of the Navier-Stokes subproblems is not (yet) optimally efficient. To
further illustrate this, in Figure 2.11, we have plotted n;,ne-, the number of inner
iterations needed for the first Navier-Stokes subproblem, versus N, the number of
grid points in z-direction. A least-squares fit reveals a linear dependence of n;pner
on N,. (ldeally, ninner is independent of N,; this might be realized with a proper
multigrid method.)
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Figure 2.10: Convergence histories of the inner-iteration process for the Gaussian pressure
perturbation with P = 0.05, R is the residual of the continuity equation (A), the z-momentum
equation (), the y-momentum equation (), and the z-momentum equation (V), only every
fourth marker is shown. Left: on Qgh. Right: on Q%
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Figure 2.11: Required number of inner iterations in first Navier-Stokes subproblem versus the

number of grid points in x-direction.

The outer iteration's convergence behavior on the three grids (Qgh, Qn, Q%) is
shown in Figure 2.12. Comparing the three convergence rates from ngyter = 2 to
Nouter = 3, it seems that the convergence is fairly grid-independent.
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Figure 2.12: Convergence histories of the outer-iteration process for the Gaussian pressure
perturbation with P = 0.05, measured in Li-norm; g, (), Q4 (A), and Q41 (O).
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Accuracy behavior For the three grids, the wave elevations in the plane y = 0 are
shown in Figure 2.13. They show a clear dependence of the wavelength and wave
amplitude on the mesh width. These effects can be attributed to the discretization
of the quasi free-surface boundary condition and the flow equations. In (2.7), u-Vo
is discretized using the O(h?) upwind scheme. First note that (2.22) is equivalent
with

u-Vp=u-Vpgs, (2.24)

using the definition (2.3). The mesh-width dependence can be partially understood
through a spectral analysis of (2.7). The term in (2.7) most relevant for the wave-
length in the main-flow direction is up,. For first analysis purposes, linearizing
around the unperturbed flow, (2.7) can be reduced to up, = 0. For u positive, the
corresponding modified equation reads

op  h?dp h3 0*p

ntop W op 4
Uar = YT 928 T UL B + O(h?%). (2.25)

Inserting a single wave solution of the form p = Pe*® into (2.25), results in
1 ik
uik (1 + §h2k2) PR = O(h3). (2.26)

From this relation it can be concluded that the numerical advection velocity of
p increases with increasing mesh width, thus increasing the length of the gravity
wave. The latter increase can be explained from the dispersion relation for waves on
deep water, see Chapter 3 in [50]. Particularly when applying a multigrid solution
strategy, one should be aware of the mesh dependency of the wavelengths. A more
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thorough analysis of the dispersion error of the discretized free-surface flow problem
is given in Chapter 5.
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Figure 2.13: Wave elevation in the plane y = 0 for the Gaussian pressure perturbation with
P = 0.05; on Qyy, (dashed), €, (dotted), and Q2 (solid).
2

2.4.5 Higher-order discretization of quasi free-surface boundary condition

As a next step, we replace the O(h?) upwind discretization of Vi in (2.22) by an
O(h?) upwind scheme. Then, the modified equation reads
0 h3 94

ua—i - —uﬁa—gﬁ +O(hY), (2.27)
showing no dispersion error, but an O(h3) dissipation error, which is responsible
for a decrease of the wave elevation. Note that the current O(h?3) dissipation error
is smaller than that of (2.25). A comparison of the solution obtained with the
two schemes, after a single free-surface update, is shown in Figure 2.14, together
with the results obtained through the potential-flow method described in [60]. As
expected, the O(h?) scheme gives slightly higher waves. But it also yields a slightly
less fast convergence of both the inner and outer iteration than the O(h?) scheme
(compare Figure 2.15's left graph with Figure 2.8's left graph, and Figure 2.15's
right graph with Figure 2.9). In the remainder of this thesis we do not use the
O(h3) discretization of the quasi free-surface boundary condition.
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Figure 2.14: Wave elevation in the plane y = 0 for the Gaussian pressure perturbation with
P = 0.05; for the Navier-Stokes method on €}, O(h3) scheme (solid) and O(h?) scheme (dotted);
and for the potential-flow method from [60] (dashed).
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Figure 2.15: Convergence histories for the Gaussian pressure perturbation with P = 0.05, on 2y,
with O(h?3) discretization of the quasi free-surface boundary condition. Left: of the inner-iteration
process, R is the residual, measured on Qp, of the continuity equation (A), the z-momentum
equation (), the y-momentum equation (Q), and the z-momentum equation (V), only every
fourth marker is shown. Right: of the free-surface pressure defect, measured on Qh; in Li-norm
(), Lz-norm (A), and Loo-norm (QO).
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2.4.6 Case with increased amplitude

The present numerical study concerns the computation of the wave pattern on Qn,
for a stronger imposed pressure perturbation. The amplitude of the perturbation
is increased from P = 0.05 to P = 0.2, leaving the other parameters unaltered.
The convergence history of the inner iteration is shown in the left graph of Figure
2.16. The computed wave elevation, in the plane of symmetry, is shown in the
right graph of Figure 2.16. This figure shows that the deepest trough has fallen off
to approximately ¢ = —0.88, instead of { = —0.18 for the P = 0.05 case, which
indicates that the wave system behaves nonlinearly.
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Figure 2.16: Computational results for the Gaussian pressure perturbation with P = 0.2, on Q.
Left: convergence history of the inner-iteration process, R is the residual of the continuity equation
(A), the z-momentum equation ([J), the y-momentum equation (), and the z-momentum

equation (V), only every fourth marker is shown. Right: wave elevation in the plane y = 0.

2.5 Modified algorithm and numerical results

2.5.1 The modified algorithm

The free-surface algorithm as described in Section 2.3.1 is computationally efficient
but the efficiency may be further improved. Alternately, the existing algorithm (i)
completely solves the Navier-Stokes equations with the free surface frozen, and (ii)
updates the free surface with the Navier-Stokes flow frozen. Complete solution
of the Navier-Stokes flow per free-surface update may be unnecessary. Here we
investigate the alternative approach of updating the free surface after each relaxation
sweep in the Navier-Stokes solver. The modified algorithm still alternates between
the bulk-flow update and the free-surface update (the complexity of a monolithic
solution of Navier-Stokes flow and free surface is still avoided), but the frequency
of alternating is much higher than in the original algorithm.

Summarizing, the modified free-surface algorithm reads:
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n:=0

. n:=n+1
For a given boundary I'rg, perform a single relaxation sweep (i.e., symmetric
for n odd, downwind only for n even) to

NSu(x),p(x)) =0, VxeQ,
B(u(x),¢(x)) =0, VxeTy,

t.r(u) - n=0, a=1,2

I'rs.
u-Vgp—Frzu~eZ:u-VpFS}’ vx € I'rs

Il. Use the new iterate (u(x), ¢(x))7 of | to obtain a new approximation of I'rpg
according to

{(z,y,z:= Fr2(ap(x) — prs(x)) : Vx € T'ps},

If |R|lcc < exs and ||p — prs|| < erg then stop, else goto I.

2.5.2 First results

The modified algorithm described in the previous section is now applied to compute
the gravity waves for the P = 0.05 case, leaving the other parameters unaltered as
well. The computation is performed on the grid Q.. As a measure of convergence
we will still monitor the residuals of the governing Navier-Stokes equations and the
pressure defect at the free surface (Figure 2.17).
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Figure 2.17: Convergence histories for the Gaussian pressure perturbation with P = 0.05,
computed with the modified algorithm, on €2),. left: of R, the residual of the continuity equation
(A), the z-momentum equation (OJ), the y-momentum equation (), and the z-momentum
equation (V). Right: of the free-surface pressure defect; measured in Li-norm (O), La-norm
(A), and Log-norm (Q).
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Remarkable in Figure 2.17 is the regular oscillation in the convergence history of the
free-surface residual || p — prg ||. This oscillatory behavior is explained by the fact
that the Navier-Stokes solver alternates between symmetric and one-sided (down-
wind) relaxation sweeps, an experimentally found optimal relaxation strategy from
which we do not deviate. Performing a free-surface update only after each sym-
metric relaxation sweep (but maintaining the alternate symmetric — anti-symmetric
relaxation) removes this oscillatory behaviour, as can be seen in Figure 2.18.
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Figure 2.18: Convergence history of the pressure defect measured in Li-norm ((J), La-norm
(A) and Loo-norm (Q); for the Gaussian pressure perturbation with P = 0.05, computed with
the modified algorithm on ), and with free-surface updates after each symmetric sweep only.

Comparing the total amounts of computational work put into the original al-
gorithm and the modified algorithm (the left graphs in Figures 2.4 and 2.17, re-
spectively), it appears that the modified algorithm is about six times more efficient
than the original, a significant improvement. The convergence history of the wave
elevation in the symmetry plane is depicted in Figure 2.19.
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Figure 2.19: Convergence history of the wave elevation in the plane y = 0 for the Gaussian
pressure perturbation with P = 0.05, computed with the modified algorithm, on Qh, numbers
denote the iteration counter n.

As expected, in comparison to the original algorithm, the modified algorithm needs
more free-surface updates, but the computational work between two consecutive
free-surface updates is of course very much less. Figure 2.19 nicely shows how the
wave train literally unfolds itself; the first iterate (marked in Figure 2.19) shows a
significant (though still far from converged) trough, a still very modest wave crest
downstream and practically no waves further downstream. In the following iterates,
besides increasingly larger wave amplitudes, also an increasingly longer wave train
arises. Also note the differences in the free-surface changes between the symmetric
(n = 1,3,5,...) and one-sided (n = 2,4,6,...) relaxation sweeps. Performing a
free-surface update after each symmetric sweep only (still maintaining the original
alternate symmetric — anti-symmetric relaxation strategy) yields the wave elevations
denoted by 1,3,5,... in Figure 2.20. This also suggests a further improvement in
efficiency if the free surface is only updated after the symmetric relaxation sweep.
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Figure 2.20: Convergence history of the wave elevation in the plane y = 0 for the Gaussian
pressure perturbation with P = 0.05, computed with the modified algorithm performing a free-
surface update after symmetric sweeps only, on ), numbers denote the iteration counter n.

A consequence of this more evolutionary convergence of the free surface is that
the Navier-Stokes method starts each relaxation on a grid that is less different from
the preceding grid as compared to the original algorithm. As a consequence, besides
more efficient, the modified algorithm is also more robust. The greater robustness
manifests itself in, e.g., the fact that higher wave elevations can be obtained (to be
shown in the next section).

2.5.3 Further results

To give an impression of the good robustness of the modified algorithm, in Figures
2.21-2.26 we present free-surface results for computations with successively P =
0.2,0.3 and 0.4. The larger P, the more iterations are required, but the algorithm
remains to be convergent. In the P = 0.4-case, a relative water height of more
than 80% is obtained (Figure 2.26).
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Figure 2.21: Convergence histories for the Gaussian pressure perturbation with P = 0.2, com-
puted with the modified algorithm, on flh. Left: of R, the residual of the continuity equation (A),
the z-momentum equation ([J), the y-momentum equation (), and the z-momentum equation
(V). Right: of the free-surface pressure defect; measured in Li-norm (), La-norm (A), and
Loo-norm (Q).
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Figure 2.22: Convergence history of the wave elevation in the plane y = 0 for the Gaussian
pressure perturbation with P = 0.2, computed with the modified algorithm, on Qh, numbers

denote the iteration counter, final iteration number n is 82.
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Figure 2.23: Convergence histories for the Gaussian pressure perturbation with P = 0.3, com-
puted with the modified algorithm, on Qh. Left: of R, the residual of the continuity equation (A),
the z-momentum equation ([J), the y-momentum equation (), and the z-momentum equation
(V). Right: of the free-surface pressure defect; measured in Li-norm (), L2-norm (A), and
Loo-norm (Q).

Figure 2.24: Convergence history of the wave elevation in the plane y = 0 for the Gaussian
pressure perturbation with P = 0.3, computed with the modified algorithm, on Qh numbers denote

the iteration counter, final iteration number n is 88.
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Figure 2.25: Convergence histories for the Gaussian pressure perturbation with P = 0.4, com-
puted with the modified algorithm, on flh. Left: of R, the residual of the continuity equation (A),
the z-momentum equation ([J), the y-momentum equation (), and the z-momentum equation
(V). Right: of the free-surface pressure defect; measured in Li-norm (), La-norm (A), and

Loo-norm (Q).
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Figure 2.26: Convergence history of the wave elevation in the plane y = 0 for the Gaussian
pressure perturbation with P = 0.4, computed with the modified algorithm, on Qh numbers denote

the iteration counter, final iteration number n is 113.
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2.6 Conclusions

Solution of the steady, free-surface Navier-Stokes equations through a time-stepping
approach is known to be inefficient, particularly in 2D but also in 3D (convergence
with \/LZ and % respectively). For the 2D, free-surface Navier-Stokes equations, Van
Brummelen et al. have proposed a non-monolithic free-surface algorithm that does
not follow a time-stepping approach. In the present chapter we have extended this
algorithm to 3D and have applied it to flow problems with increasing nonlinearity
of the wave system.

Our results show that, for convergence purposes, it makes sense (i) to take
the computational domain sufficiently large and (ii) to discretize the quasi free-
surface boundary condition only first-order accurate in the far field. (In this way,
unperturbed far-field boundary conditions can be imposed.) The results also show
that the exclusion of the wave-dissipation zone in the calculation of the norm of the
free-surface pressure defect is beneficial to the free-surface convergence rate. This
approach is perfectly acceptable because the wave-dissipation zone is outside our
domain of interest.

The results also reveal that reinitializing the preconditioner after each free-
surface update has an adverse effect on the computational efficiency of the solution
process of the Navier-Stokes subproblem. Not reinitializing the preconditioner after
each free-surface update improves the convergence of the outer-iteration process.

The considered 3D free-surface algorithm appears to quickly yield the proper
3D wave physics. The free-surface pressure defect seems to converge rather grid-
independently. For linear and mildly nonlinear wave systems, free-surface iteration
may not even be necessary though; only a single free-surface update may be suffi-
cient for finding the wave pattern to within engineering accuracy.

An important result of the chapter is the proposed reduction of the inner iteration
to a single work unit only (a single relaxation sweep). This reduction yields a
significant improvement in both efficiency and robustness. This modified version
of the free-surface algorithm is expected to be useful to ship hydrodynamics in an
industrial context. It is further applied in Chapter 4.



CHAPTER 3

Evaluation of Nonuniform Meshes for 3D
Navier-Stokes Flow

3.1 Introduction

In the previous chapter, through numerical experiments, we investigated the con-
vergence and accuracy of our 3D free-surface iteration method. In Chapter 1 we
stated that our main goal is to develop a numerical method for the computation of
the wave pattern generated by a ship hull. In numerical ship hydrodynamics two key
features are predominant: () the free surface and (ii) the boundary layer. Both fea-
tures possess length scales which are very dissimilar: the free surface length scale ¢,
which is typically the ship’s length, and the boundary-layer thickness 4, for which it
holds: § < ¢. The mutual influence of these two length scales cannot be neglected
if an accurate approximation of the flow field and any derived quantity, such as, e.g.,
the total drag of the ship, is to be computed with a numerical method. To properly
account for both free-surface and boundary-layer features the 3D, incompressible
Reynolds-averaged Navier-Stokes equations have to be solved in conjunction with
the free-surface conditions. This is a non-trivial matter, particularly at the intersec-
tion of the free surface with the ship hull, due to the incompatibility of the kinematic
free-surface condition, imposed on the free surface, and the no-slip boundary con-
dition, imposed on the hull. This so-called ‘contact-line' problem can be seen as
follows. Substitution of the no-slip condition u = 0 into (2.8) yields

ne =0, (3.1)

hence
n(x,t) =n(x,0), Vxe€Tl,, t>0, (3.2)

where
s = {x C 002 : u(x) = 0}, (3.3)

where ns refers to no-slip. This means that along the intersection line the free
surface does not move from its initial position. Hence the waterline cannot be
determined with any numerical method based on this formulation of the free surface.
A common solution often encountered in numerical algorithms uses an extrapolation
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of the local wave height near the hull, see, e.g., [16, 73]. This approach is justified
by the argument that the mesh width near the ship hull, in normal direction, is small
so that extrapolation can be done accurately. We will show, in a later section, that
the free-surface iteration method proposed in this thesis does not suffer from the
contact-line problem.

Since we consider high Reynolds-number flows the corresponding boundary layers
are very thin. To accurately resolve the boundary layer on a uniform mesh, the total
number of grid points normal to the flow direction is proportional to Re? in case of
a laminar boundary layer. This results in an unreasonably large number of nodes,
especially in R%, d > 1.

The abovementioned situation strongly advocates the necessity of non-uniform
meshes. There are two main variants of this approach. One may choose an a-
priori refined mesh, based on a-priori knowledge of the solution, i.e., location and
some measure of the thickness of the boundary layer. Or one may compute some
approximation on a given mesh, and then use this information to adapt the mesh
a-posteriori. In the category of a-priori refined meshes theoretical results on (i)
parameter-uniform convergence of the iterative method and on (i) accuracy of
the approximate solution have been obtained for singularly perturbed differential
equations in R?. See Chapter 4 in [79] for an introduction to the subject and
[24, 63] for a more extensive overview. This theory has led to the simplest non-
uniform mesh, namely the piecewise-uniform mesh which is fitted to the boundary
layer. Such a mesh is composed of two uniform submeshes: a fine submesh in the
boundary layer and a coarse submesh outside the boundary layer. The transition
between the fine and the coarse submesh is determined by specifying the location
of the transition, denoted by o. In [24] it is argued that 0 = (¢, N), where ¢ is the
singular perturbation parameter, say ¢ = Re™ ', and N the total number of points
in the direction normal to the flow. The intuitive argument for the choice of o is
that it should be chosen such that o > §(IN) where §(N) is some discrete measure
of the boundary layer thickness. For a known boundary-layer function f(z), e.g.,
f(x) = e~ %, the computational width ¢ of the boundary layer may be required to
satisfy the condition that for z > o the function values f(x) are smaller than the
discretization error. Assume that, in formula, this may be written as

sup | f(z)| < N77, (3.4)

x>0

—Z
€

where p is the order of accuracy of the discretization. From (3.4), for f(z) = e
it follows
o =pelnN. (3.5)

The type of mesh for p = 1 and with the coarse and the fine submesh each containing
% mesh points, is known as a Shishkin mesh. The advantage of a Shishkin mesh
is its simplicity. However, this mesh has as major drawback that a-priori knowledge
about the thickness of the layer structure is imperative. In general, e.g., for turbulent
boundary layers, this knowledge is not available a-priori.

A frequently encountered second type of non-uniform mesh is the exponentially

stretched mesh. Here the transition from the fine to the coarse mesh is more gradual
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depending on the form of the mesh generating function. Various mesh generating
functions can be conceived. An example of an exponentially stretched mesh is the
Bakhvalov mesh, see, e.g., [63]. Assuming a boundary-layer function of the form
f(z) = e P%, 3> 0, Bakhvalov's idea is to use an equidistant f(z)-grid, and then
to map this grid back onto the x-axis by means of the boundary-layer function, see
Figure 3.1. That is, the grid points z; near x = 0 are defined by
€ i
x; = 3 In(1 N). (3.6)
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Figure 3.1: Schematic representation of the Bakhvalov mesh (left figure) and the Shishkin mesh
(right figure).

An advantage of the piecewise-uniform mesh — which in fact motivates this
research — is that its generation is so simple, and therefore also its a-posteriori
adaptation. Hence, our primary focus, in this chapter, is on the viability of the
piecewise-uniform mesh for engineering type flow problems, particularly flow prob-
lems which involve a free surface. As a model problem, we compute the flow along
a partially submerged flat plate in a uniform horizontal flow with a pressure pertur-
bation imposed at the free surface, a perturbation of the form (2.21). This model
problem contains the relevant flow features which would also be encountered in an
actual ship hydrodynamics problem, i.e., a boundary layer, stagnation points and
a free surface which intersects the boundary layer, but it lacks the geometric com-
plexity. To resolve the boundary layer, both types of meshes, i.e., the piecewise
uniform and the exponentially-stretched one, are considered.

The numerical results of this chapter can be divided into three parts. In the first
part any free-surface effect is neglected and the emphasis lies on the computation
of the boundary-layer flow along the flat plate, on the piecewise-uniform and the
exponentially-stretched mesh. Here we assume that the flow is laminar and we
consider a single value of Re only. This flow problem is known as Prandtl’s problem
and has a semi-analytical solution, known as the Blasius solution, see, e.g., [64].
This solution will serve as a reference solution at the center of the plate. The second
part will focus on the computation of the same laminar boundary layer for varying
Reynolds numbers (106 — 16 x 10°), again neglecting the free-surface flow. In the
third part the free-surface flow is no longer ignored. Here the aim is to compute
the boundary layer as well as the shape of the free surface. In this part we assume
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the boundary layer to be fully turbulent. The turbulence is accounted for through
the use of an algebraic turbulence model for the eddy viscosity v;. The free-surface
iteration method employed here corresponds to the method described in Section
2.3.1. In adjustments of the free-surface boundary, the underlying mesh points
have to be redistributed to keep the mesh smooth. It is our idea that this free-
surface mesh adaptation may be nicely combined with an adaptation of the mesh
to fit the computed boundary layer. For the Shishkin mesh, this only requires some
a-posteriori measure of the computational width of the boundary layer to determine
the transition parameter o.

3.2 Computational method

The viscous free-surface flow problem studied in this chapter is identical to the
one described in the previous chapter, except for the presence of the flat plate.
The boundary-value problem which has to be solved and the numerical methods
which are applied to solve the discrete boundary-value problem correspond to the
descriptions given in Sections 2.2 and 2.3, respectively. In this section we will restrict
ourselves to describing the deviations only.

Let © C R? denote the computational domain bounded by 9Q = T'y U I'pg,
where I'rg denotes the free surface and Ty the remaining (fixed) part of Q2. The
computational domain is bounded by

Q= {(x) : [~1,3] x [0,4] x [4,m]}, (37)

where 7 : [—1,3] x [0,4] — R represents the wave-height function. On T, the
boundary conditions (2.15) — (2.19) are imposed. However, in this chapter the
internal boundary y = 0 is decomposed into a symmetry plane and the flat plate,
defined by

1

on which the ‘no-slip’ boundary condition is imposed, i.e.,
u(x)=0, v(x)=0, wx)=0, VxeTl,;. (3.9)

In Sections 3.3.1 and 3.3.2 the free-surface flow is still ignored by replacing the
free-surface boundary conditions (2.20) and (2.22), imposed at z = 7, by (2.19)
imposed at z = 0. This effectively reduces the 3D flow problem to a 2D flow
problem in the (z,y)-plane.

As initial solution for the iteration method the uniform-flow solution is used.

3.3 Numerical results

In Section 3.3.1 and Section 3.3.2, a comparison is made of the laminar boundary
layer computed on a piecewise-uniform mesh and on an exponentially stretched
mesh, where in Section 3.3.1 a variation of the mesh spacing is considered at fixed
Reynolds number and in Section 3.3.2 a variation of the Reynolds number at fixed



3.3 Numerical results 45

mesh size. In both sections the free-surface flow is not considered yet. Section 3.3.3
constitutes the same problem as before but now the free-surface flow is included
and the boundary layer is now assumed to be turbulent.

3.3.1 Laminar boundary layer

The Reynolds number is set at Re = 10% and the flow is assumed to be laminar.
It is known that this problem does not have an analytical solution in closed form.
We use the semi-analytical first-order solution of Blasius as a reference for the
boundary-layer velocity profiles, see [64]. Note that this solution is not valid near
the two singular points, i.e., the leading and trailing edge of the plate. It has been
shown that in a region around the leading edge of the plate, a region with size
O(Re™ '), the full Navier-Stokes equations have to be solved, see e.g. [78]. Near
the trailing edge the situation is even more complex. Here, according to triple-deck
theory, several regions with sizes depending on Re™®, a € QT, can be identified.
In a region with radius O(Re_3/4), and centered around the trailing edge, the
full Navier-Stokes equations have to be solved. This region will be smaller than
the smallest mesh width on our finest mesh. Hence, the reduction of our viscous
operator, i.e. Tf}f =0, is still warranted.

Piecewise-uniform mesh

First, we construct the piecewise-uniform fitted mesh. Because the computational
domain is rectangular, the mesh QY is the tensor product of three 1D-meshes, i.e.
QN = QN+ x QNv x QN+, where N,,, N,, and N, denote the number of nodes in the
z-,y- and z-direction, respectively. Since the boundary layer is in the y-direction,
only Qv has a piecewise-uniform mesh fitted on the total interval y € [0,4] such
that each of the subintervals [0, 0] and [o,4] has 2 uniformly spaced nodes. So,

2
the mesh widths for the fine and coarse submesh are

2 2Ye
hyzﬁg and Hy:i
y

h

~N respectively, with y. = 4. (3.10)
y

QN+ and QY= are uniform meshes. To completely define the mesh it remains to
specify the value of o. In the foregoing section for the case of an a-priori known
exponential boundary-layer function e~ %, we derived 0 = peln.N. Since in the case
of Prandtl's problem the boundary-layer function is not known in analytical form,
but since we do know that — as in the e~< model problem — the dependence of ¢
is dominant over N, we simply neglect the dependence of o on N and assume that
o = o(\/€), where ¢ = Re™". Here we choose ¢ = C§, where C is an arbitrarily
chosen constant (C' = 5) and ¢ is an estimate of the boundary-layer thickness at
the trailing edge of the plate, which can be estimated with § = 5/\/%, see [64],
resulting in

o(Re) = 25/VRe. (3.11)

The constant C' is incorporated as to provide a safety margin so that the complete
boundary layer is fitted in the part with the fine mesh. In the remainder of this
chapter the piecewise-uniform mesh is denoted by Q.
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Exponentially-stretched mesh

The second type of mesh we consider here, is the exponentially graded type, which
will be denoted by Q2. This mesh is also the result of a tensor product of three 1D
meshes. The non-uniform distribution is applied in the y-direction only. The mesh-
generating function corresponds to the solution of the following boundary-value
problem, find y(¢) : [0,1] — R, such that it satisfies

y"(¢) +ay'(¢) =0, (312)
y(0) =0, y(1)=4, (3.13)

where o« € R~ is the stretching parameter, which is defined below. The discrete
y(j) coordinates of the mesh points correspond to the set

y(j) = {y(JAC),j € [0,N] € N,AC = N7} (3.14)

The mesh spacing in the z- and z-direction is identical to that for the piecewise-
uniform mesh. The stretching parameter follows from the (nonlinear) equality

(y(2) —y(1)ar = (¥(2) — y(1))|o=. (3.15)

The computations are performed on a family of three meshes with densities N, 2N, 4N,
where N = 20. The corresponding stretching parameters « are given in Table 3.1.

QE.N OF2N QFAN

6.40518 6.30506 6.25701

Table 3.1: Computed stretching parameters «.

In the remainder of this chapter the numerical results are monitored at the
center of the flat plate, unless mentioned otherwise. To be able to compare the
computed solution with the Blasius solution the velocity components u and v are
scaled, according to

= %, V= % sRe and n:= %\/Re, (3.16)
and are evaluated at s = % which corresponds with = = 0, and at z = —2 (hence

at the middle of the plate). The scaled velocity-component distributions, computed
on QF and QF, are shown in Figures 3.2 and 3.3, respectively.
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Figure 3.2: wu-profile at center of plate, computed on QF (left figure) and QF (right figure)
with mesh densities N(O), 2N (A) and 4N (<), and with the Blasius solution (solid). (N = 20).
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Figure 3.3: v-profile at center of plate, computed on QF (left figure) and QF (right figure) with

mesh densities N (OJ), 2N (A) and 4N (), and with the Blasius solution (solid). (

N = 20).

The mainstream velocity component u shows monotone convergence to the
Blasius solution with decreasing mesh width for both types of meshes. However,
Figure 3.3 reveals a non-monotone convergence, for both types of meshes. Note,
for instance, the small negative value of v computed on both Q2N and QF2N A
clear comparison of the two distributions of the velocity components computed on
QPAN and QF 4N is made in Figure 3.4.
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Figure 3.4: w-profile (left figure) and v-profile (right figure) at center of plate, computed on
QPAN (O and Q4N (), and the Blasius solution (solid). (N = 20).

From the computed velocity profiles as depicted in Figures 3.3 and 3.4 it can not
be concluded which of the two types of grids performs best. However, the pressure
reveals a significant difference, as can be seen in Figure 3.5.

50—

0 ! d 3 !
-0.0023 -0.0022 -0.0021 -0.002
p

Figure 3.5: Pressure distribution at center of plate, computed on QP4N (O) and QF4N (¢).
(N = 20).

The first-order approximation of the pressure field resulting from the classical
boundary-layer theory is known to satisfy % = 0. For the Navier-Stokes compu-
tation this is not the case. Due to the fact that the center of our plate is not
infinitely far from the leading edge, with as a consequence a still finite curvature
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of streamlines, we find a still finite pressure gradient in n-direction. On QF the
pressure shows a sudden erroneous jump at the transition from the coarse to the
fine mesh. The slight difference in p(n = 0) for both types of meshes, as observed
in Figure 3.5, is considered to be irrelevant.

The convergence of the residuals of the equations, for the computations on
QF and QF for the three mesh densities, is shown in Figures 3.6, 3.7 and 3.8. The
convergence is monitored using the Lo,-norm. Employing norms which involve some
kind of averaging, e.g. ||.||1, ||-||2 or the energy norm |||.|||, possesses the probability
of not detecting the boundary layer. See [24] for a more elaborate discussion on
proper norms for singularly perturbed problems.

IR Humnm
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Figure 3.6: Convergence histories of the iteration process on QN (left figure) and QF N (right
figure). R is the residual of the continuity equation (A), the z-momentum equation ([J) and the

y-momentum equation () , only every fourth marker is shown. (N = 20).

Let R := (Ry, Ry, R., Raivu)T be the residual vector with as components the
residuals of the governing equations, i.e., the momentum equations and the di-
vergence of the velocity field. Of these four residuals, the R.-component is of
no significance since the boundary conditions specified prevent any dynamics in z-
direction, and therefore this component is not plotted here. The 2D flow problem
is restricted to the (z,y)-plane. Monitoring the location of ||R/|s on Q¥ shows
that the initially slow convergence of the y-momentum equation, is due to the sud-
den change of the mesh width at y = 0. The residuals | Ry |0, for ninner > 150
occur near the external boundary, y = 4. The residuals | R || mostly occur in the
boundary layer at the center of the plate or in the wake near the outflow boundary.
On QFN no specific area is observed for || R,||o-
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Figure 3.7: Convergence histories of the iteration process on Q72N (left figure) and QF:2N
(right figure). R is the residual of the continuity equation (A), the z-momentum equation (OJ)
and the y-momentum equation () , only every fourth marker is shown. (N = 20).

The locations of the residuals on Q72V coincide with the sudden jump in the
mesh width at y = o, as was mostly the case with QY. On QF:2N  however,
most residuals mainly occur in the boundary-layer region.
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Figure 3.8: Convergence histories of the iteration process on Q74N (left figure) and QF4N
(right figure). R is the residual of the continuity equation (A), the z-momentum equation ([J)
and the y-momentum equation (O) , only every fourth marker is shown. (N = 20).

The Figures 3.6 — 3.8 show that the amount of work for the computation on the
piecewise-uniform mesh is always slightly less than on the exponentially stretched
mesh.
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3.3.2 Variation of Reynolds number on piecewise-uniform mesh

In this section the variation of the Reynolds number is studied. Here we consider, in
addition to Re = 109, as considered in the previous section, the Reynolds numbers
Re = 4x 105 and Re = 16 x 108. All computations are performed on the piecewise-
uniform mesh Q74N with N = 20. The transition parameter o is obtained from
(3.11). The profiles of the velocity components u and v, at the center of the plate
and all scaled for Re = 109, are shown in Figure 3.9.

8- S

Figure 3.9: w-profile (left figure) and v-profile (right figure) at center of plate, computed on
QPAN for Re = 108 (O), Re = 4 x 10% (A) and Re = 16 x 10% (Q), and the Blasius solution
(solid). The vertical scale corresponds with Re = 106. (N = 20).

For each of the three Reynolds-number cases, it appears that, as expected, for
the u-component, the difference between the computed solution and the Blasius
solution increases toward the edge of the boundary layer, and then decreases to
zero for further increasing 7. From classical boundary-layer theory it follows that

0y 016 1

2 =0 3.17

01 04 2 ( )
where §}, is the boundary-layer thickness belonging to Re = k x 105. The numerical
results plotted in the left graph of Figure 3.9 show that these fractions are

1)
22068, and —2 =0.63, (3.18)
04
revealing a slowly converging Reynolds-number dependence, assuming that (3.17)
is exact.

Furthermore, with increasing Reynolds number, for n — oo, the v-component
shows an increasing deviation of the asymptotic value according to Blasius. From
classical boundary-layer theory it follows that

Voo := lim wv(n) = 0.8604, (3.19)

—00
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where v is scaled according to (3.16). Table 3.2 shows the maximum values of v,
corresponding with the three numerical curves in the right graph of Figure 3.9.

Re 106 4x10% 16 x 10°
Umax | 0.7055  0.7016 0.6692

Table 3.2: Computed maximum values of v for the various Reynolds numbers.

The observed deviation may have physical and numerical causes. The latter
may be analyzed by deriving the leading-order terms of the truncation error, here
denoted as 7y, resulting from the schemes described in Section 2.3.2. Assume, for
the purpose of analysis, that the mesh width in z- and y-direction is uniform, i.e.,
hy = hy = h. Then the truncation error is obtained via a Taylor-series expansion of
the solution components u(x,y), v(z,y) and ¢(z,y) around the point (x;,y;). The
dependence of the truncation error on the Reynolds number can be made explicit
by redefining all variables through application of the scaling

T = ,y::%vRe,u:ZL,v::L Re and h:zﬁ. (3.20)

z
¢ Uso Uso ¢

This results in the following expressions for the leading-order terms of the truncation
errors. For the continuity equation:
h? 03u 3 h3 0*v

?% — ne Ea—y4 as h— 0, (321)

Th —

and for the x- and y-momentum equations:

h? &u sh® 9*u  h39%  h? 0% 0*u
Th—?u$*Re Eva—y4+5w E(Re @‘FRGW), (322)
and
h? 93v s h3 9% s h3 0% h? L 0% ot
= —u—-———-Re?—v—+Re?2——-—+— | Re" " — +Re— |, (3.23
Th= g s e g T 62128y4+12< ¢ ot eay4> (3.23)

respectively, as h — 0. Choosing the mesh width h in the boundary layer such that
1

Re?h = O(1), helps to control the growth of the truncation error of the continuity

equation and the z-momentum equation. This can be seen as follows, choosing

h:= QNU and o := \/%7 (3.24)
yields
2 2
Re?h = Re? WR(Z% = WC (3.25)

which is independent of the Reynolds number. Note, that by setting C := N/2,
instead of an arbitrarily chosen constant C, Re?h exactly equals one. (This choice
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implies a genuine Shishkin mesh, ¢ = o (g, N), instead of a piecewise-uniform mesh,
o =0(c).)

However, both choices (C is constant and C' = N/2) do not bound the trun-
cation error of the y-momentum equation, for increasing Re with h fixed. The
coefficient of the ngf—term in (3.23) can be written as Re(Re%h):S, which shows a
linear increase with increasing Reynolds number as long as (3.24) holds. A further
expansion of the Taylor-series for the discrete g—‘;’—term reveals that each term in the

. . . 1 . .
expansion contains the coefficient Re(Re?h)P, with p the order of the truncation
term.

In order to control this term, the mesh should be chosen such that

Re?h® = O(1). (3.26)
This can be achieved by choosing
2
h = ﬁa and o:= %, aeqQt, (3.27)

where C'is, again, a suitably chosen constant. From this, one can derive that for
o =32, (3.26) is satisfied. E.g.,
o= CS (3.28)
Res
might be a well-suited alternative for (3.11). Again, if C':= & then (3.26) is equal
to 1.

The convergence history for the residuals is still shown in Figure 3.10. As in the
case of the mesh width variation, with a fixed Reynolds number, only the R,, R,
and the the Rgiv, components of the residual vector are important. This figure
shows that the efficiency of the Navier-Stokes method is not parameter uniform,
i.e., the computational work depends on the Reynolds number.
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Figure 3.10: Convergence histories of the iteration process on Q74N for Re = 4.105 (left
figure) and Re = 16.10% (right figure). R is the residual of the continuity equation (A), the -
momentum equation ([J) and the y-momentum equation (O) , only every fourth marker is shown.
(N = 20).
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Triple-layered piecewise-uniform mesh From Figure 3.9 can be observed that
the v-component of the Blasius solution has two regions where rather steep gradients
are present, i.e., a lower layer which, for Re = 108, is located in, say, 0 <n <3
and an upper layer located in, say, 3 < n < 6. In the construction of Q4N
which is based upon the boundary layer in the u-component, this lower layer has
been accounted for, collectively with the upper layer, not separately. We will now
proceed by resolving the lower layer more accurately than the upper layer. To do
so we propose the triple-deck piecewise-uniform mesh depicted in Figure 3.11. We
denote this mesh by Q7PN

N/3 N/3 N/3

INENNEN] 1 1 | X
0 o, [

Figure 3.11: Example of a triple-deck piecewise-uniform mesh.

This new grid is defined by two transition parameters, o1 and o2, which are
specified by

o1 = 015 ., Cp, =200, and o= & Cy = 25. (3.29)
Res Re2

Given the analytical results from the previous section, we speculate that for our
reduced Navier-Stokes equations, the lower-layer thickness is proportional to Re™%.
The constant C1, in the expression for o1, is determined by the upper bound chosen
for the lower layer. We choose 7 = 2/2 for Re = 10%. Now each region is
discretized uniformly using % grid points. In this section we repeat the computations
of the previous section but now performed on Q7PN (N = 90). The computed
(scaled) velocity components are shown in Figure 3.12.

8

Figure 3.12: w-profile (left figure) and v-profile (right figure) at center of plate, computed on
QTD:N for Re = 10% (OJ), Re =4 x 10% (A) and Re = 16 x 108 (), and the Blasius solution
(solid). The vertical scale corresponds with Re = 106. (N = 90).
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The numerical results reveal a more or less similar dependence on the Reynolds
number, as can be concluded from

% _ 063, and 2° — 02 (3.30)
51 64

However, the sensitive v-component suggests that the triple-deck grid has a neg-
ative influence on the solution quality; the v-component shows a non-monotonous
convergence behaviour. The accuracy gained by the increased resolution of the
lower layer is more than undone by the jump in the mesh size at y = o (which is
located inside the boundary layer instead of outside like the jump at y = 032), and
also by the somewhat coarser grid in the upper layer as compared to the double-deck
grid. In the remainder of this chapter we refrain from application of the triple-deck
piecewise-uniform mesh.

The convergence histories of the residuals, for the computations on Q7PN are
still shown in Figure 3.13.
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Figure 3.13: Convergence histories of the iteration process on Q7PN for Re = 106 (top
graph), Re = 4 x 10% (middle graph) and Re = 16 x 106 (bottom graph). R is the residual of
the continuity equation (A), the z- momentum equation ([J) and the y-momentum equation (O)

, only every fourth marker is shown. (N = 90).
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3.3.3 Flat plate with free-surface perturbation

As mentioned in Section 3.1, this test case serves to model a typical flow prob-
lem arising from numerical ship hydrodynamics, however, without the geometrical
complexity. Here the free-surface flow is added to the flow problem of the previous
(two) sections. The free-surface waves are generated by (i) a perturbation imposed
at the free surface and (i7) the displacement effect of the boundary layer. We con-
jecture that the latter is negligible compared to the effects of the imposed pressure
perturbation. The computed wave pattern as a result of the displacement effect
only, can be found in [10]. The perturbation imposed is again of the form (2.21).
The solution and convergence behaviour of the free-surface flow problem, without
the presence of the flat plate, have already been studied in the previous chapter.
Here the flat plate, with length £ = 1, introduces a boundary layer and wake which
now interacts with the free surface. This flow problem, unlike the flow problem
from the previous sections, has no known analytical solution. Since the influence of
the boundary-layer solution is only local, it can be assumed that the flow solution
outside the boundary layer corresponds to the solution computed in the previous
chapter, at least qualitatively.

This brings us to the item of matching the boundary layer with the free sur-
face. Most numerical free-surface methods suffer from the ‘contact-line’ problem
as discussed in Section 3.1. In order to circumvent the contact-line problem, any
free-surface update procedure should preferably not involve the velocity. Since our
free-surface update procedure is based on the pressure, in principle, it does not
suffer from this drawback. This can be seen as follows, substitution of the ‘no-slip’
condition into (2.22) yields no incompatibility as long as ||V|| remains finite.

Here we consider as value for the amplitude of the perturbation: P = 0.05,
with & = —4, (zc,y.) = (—3,0). The Reynolds and Froude number for this
computation are set at Re = 10% and Fr = 0.6, respectively. And the boundary layer
is considered to be turbulent with an eddy-viscosity v; determined by an algebraic
turbulence model. Here the Cebeci-Smith model is used. Details of this model
and its implementation can be found in [31]. The flow computations are performed
on QFAN and Q74N Both domains are of the size (4¢)3, with ¢ being the plate
length. All computations are performed with an O(h?)-upwind biased difference
scheme for the quasi free-surface condition and the nonlinearity of the quasi free-
surface condition is taken care of via Newton's method. As mentioned in Section
3.1, the free-surface algorithm corresponds to the one described in Section 2.3.1.

The result of the interaction of the boundary layer with the free-surface flow
can be seen in Figure 3.14 for the computation on Q4.
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Figure 3.14: Computed wave elevation on Q74N for P = 0.05 with flat plate (left figure) and
without flat plate (right figure). (N = 20). Note that in the left figure (zc,yc) = (7%,0) and in
the right figure (zc,yc) = (0,0).

The presence of the boundary layer and wake, due to the flat plate, is clearly
visible in the region near the plane of symmetry, y = 0. As anticipated, the solution
away from the flat plate does not seem to be influenced very much by the presence
of the flat plate. A similar conclusion can also be drawn from observation of the
wave pattern computed on Q74 A comparison of the solutions, computed on
QFAN and QPAN | reveals a difference of the free-surface flow, as can be seen in
Figure 3.15.

Figure 3.15: Computed wave elevation on Q4N (dashed) and on Q4N (solid). (N = 20).
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Figure 3.15 shows a phase difference between the two solutions in the outer-flow
region. This phase difference can be attributed to the sudden increase of the mesh
width on QPN This behaviour is consistent with the numerical results presented
in Section 2.4.4. There it was shown that a dispersion behaviour changes when the
mesh width is varied. Furthermore, the sudden change in mesh width also increases
the numerical damping, resulting in a loss of amplitude for the computed wave
pattern as compared to the solution computed on QF4V as can be seen in Figure
3.16. Note the large difference in the wave amplitude in the downstream region of
the flat plate.
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Figure 3.16: Computed wave elevation on Q4N (dashed) and on QF4N (solid) for y = 0
(left figure) and y = 0.5 (right figure). (N = 20).

The two types of grids also have an effect on the computed velocity profiles in
the boundary layer. The (unscaled) u- and v-velocity profiles are shown in Figure
3.17. Note that the v-profile shows a non-monotone behaviour at y = o, but not
the u-profile.
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Figure 3.17: Computed (unscaled) wu-profile (left figure) and v-profile (right figure) in the
boundary layer at the center of the plate. Q4N (A) and QF4N (0O). (N = 20).

Since Q74N has more grid points near the outer edge of the boundary layer, on
QPN the curvature in the u-profile is better captured than on QF4N.

The convergence behaviour for the computations on Q4N and QF4N
in Figures 3.18 and 3.19, respectively.

is shown
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Figure 3.18: Convergence histories on QPAN [ eft: of the free-surface pressure defect; measured
in Li-norm (0J), La-norm (A), and the Loo-norm (). Right: of the inner-iteration process, R
is the residual of the continuity equation (A), the z-momentum equation ([J), the y-momentum
equation (), and the z-momentum equation (V). (N = 20).
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Figure 3.19: Convergence histories on QEAN [ eft: of the free-surface pressure defect; measured
in Li-norm (O), La-norm (A), and the Log-norm (). Right: of the inner-iteration process, R
is the residual of the continuity equation (A), the z-momentum equation ([J), the y-momentum
equation (), and the z-momentum equation (V). (N = 20).

In these computations the grid-sequencing strategy has been applied. This
strategy is responsible for the jumps in |R||co at Tinner = 5,25 and 50 for the
computation on Q7% and at nipner = 5,24 and 42 for the computation on
OFAN _ The grid updates occur at nppner = 83,89, 91,92 and 95 for Q74N and at
Ninner = 79,111,112,215,225 and 227 for QF 4N As can be observed from both
figures, only the first free-surface update results in a substantial decrease of the
pressure defect, the following updates do practically nothing. This can be explained
by the fact that these latter free-surface updates induce perturbations which are
of the order of accuracy with which the stationary Navier-Stokes subproblems are
being solved. Furthermore, note the difference in computational work for the two

types of meshes. The computation on 274V requires again less work than that on
QEAN_

Mesh adaptation strategy

The main advantage of the piecewise-uniform mesh is its simplicity. This type
of mesh lends itself perfectly well to be incorporated into an a-posteriori mesh
adaptation method. The key issue in the construction of the piecewise-uniform
mesh is the determination of o, i.e., the location of the transition between the coarse
submesh and the fine submesh. In this test case, and for the flow computation in
numerical ship hydrodynamics in general, the boundary-layer thickness will vary
in streamwise and also in depth direction, say the x- and z-direction. Hence, to
accurately capture the boundary layer, o := o(x, z). Furthermore, the value of o is
determined by some discrete measure of the boundary-layer thickness, e.g.,

supu(z,y,z) <7, with =1, (3.31)
y>o
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with u scaled. Once o has been determined one has to choose the fractions of
grid points to be distributed over the coarse and fine submesh. (Here each sub-
mesh contained % mesh points.) Then the piecewise-uniform mesh is completely
specified.

3.4 Conclusions

The subject of this chapter was the investigation of the suitability of piecewise-
uniform meshes for Navier-Stokes computations with free-surface water waves.

The presence of a boundary layer requires the necessity of a non-uniform mesh.
Here we considered two variants, i.e., the piecewise-uniform mesh, a simplified form
of the Shishkin-mesh, and the standard exponentially-stretched mesh. On both
types of meshes we first computed the laminar boundary layer, neglecting the free-
surface flow. Variations of the mesh width and Reynolds number reveal a comparable
behaviour of the solution computed on both types of meshes. However, on the
piecewise-uniform mesh a non-smooth behaviour of the pressure and the normal
velocity component occurs at the interface between the fine and the coarse mesh.
(The streamwise velocity component does not show this non-smooth behaviour.)
This erroneous behaviour of the pressure and the normal velocity component does
not occur in the solution computed on the exponentially stretched mesh.

Error analysis for the discrete Navier-Stokes equations according to the finite
difference schemes described in Section 2.3.2 shows that for increasing Reynolds
number and fixed mesh size, in order to bound the Iocal5 truncation error in ti}e
y-momentum equation, it makes sense to take o —~ Re™ ¢ instead of 0 =~ Re™ 2.
Numerical computations with a triple-layered, piecewise uniform mesh have not
(yet) confirmed this.

As mentioned previously, an advantage of the piecewise-uniform mesh — which
in fact motivates this research — is that its generation is so simple, and therefore
also its a-posteriori adaptation to the turbulent boundary layer, an adaptation which
may be easily done simultaneously with that of the free surface. For the present
flat-plate case, adaptation of the mesh to the boundary layer appeared to be not
necessary yet.

Given the aforementioned disadvantage of a non-smooth solution behaviour near
the jump in mesh width, the piecewise-uniform mesh will not be considered anymore
in this thesis.



CHAPTER 4

Numerical Simulation of 3D Steady
Free-Surface Flows around a Ship Hull

4.1 Introduction

The drag of large merchant and naval vessels is of great economical, environmental
and hence societal importance. The main contributions to the drag of the under-
water part of the hull are: viscous drag associated with the boundary layer and
wake, and wave drag due to the excitation of a wave pattern. While at relatively
low speeds the viscous drag is dominant. The wave drag becomes increasingly
important at higher speeds and can amount up to 50 % of the total drag in still
water.

An accurate estimate of the drag requires an accurate description of the complete
flow field, i.e., the shape of the free surface and the underlying velocity field and pres-
sure. Traditionally, the computation of the complete flow field is performed through
a segregated approach justified by the validity of Froude's hypothesis; i.e., gravity
and viscosity are supposed to act independently for smooth, slender hull shapes and
their mutual interaction is supposed to be a higher-order effect. This decomposition
entailed inviscid boundary-integral methods for the computation of the free surface,
see, e.g., [60] and the references therein, and boundary-layer/Navier-Stokes meth-
ods for the computation of the viscous effects, see, e.g., [31]. This splitting of the
two effects is justified as long as the viscous effects do not strongly interact with the
free-surface flow. The approach fails if, e.g., massive separation of the boundary
layer occurs near or at the free surface. To properly, i.e. simultaneously, account
for the influences of both features the (Reynolds-Averaged) Navier-Stokes equations
have to be solved in combination with the free-surface flow conditions. This is a
major subject within the field of numerical ship hydrodynamics for a number of
years now. Much progress has already been made into this direction, see, e.g., [61]
for a short overview.

The main topic of this chapter is the application of the free-surface algorithm, as
described in the previous chapters, to a practical application originating from numer-
ical ship hydrodynamics. The test case to be considered comprises the computation
of the complete (turbulent) flow field, including the generated wave pattern, around
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the Series 60 hull (Figure 4.1) at Fr = 0.316 and Re = 10°. This is a standard
test case in numerical ship hydrodynamics for free-surface flow algorithms. Much
is known about the flow solution. In this chapter we will concentrate on the free-
surface flow and on the interaction of the free surface with the boundary layer and
wake.

Stern

Figure 4.1: The Series 60 hull.

The outline of this chapter is as follows. Section 4.2 addresses the computa-
tional method, which is an extension to curvilinear domains of the Cartesian-domain
method used in Chapter 2. Of particular interest in Section 4.2 is the remeshing
algorithm. This is a non-trivial matter in 3D and, particularly, in curvilinear domains
because of the danger of, e.g., mesh tangling. Section 4.3 contains the numerical
results, applying a ‘double-body’ approximation, a partially linearized formulation
as well as a fully nonlinear one. Section 4.4 concludes this chapter.

4.2 Computational method

4.2.1 Discretization in curvilinear domain

Many flow problems arising from engineering applications involve a complex geome-
try and as a result the discretization of the computational domain and corresponding
equations is far from trivial. The discretization of the computational domain entails
a distribution of a finite set of points, in case of a finite-difference method. Here
we apply a structured boundary-fitted mesh, instead of a Cartesian or an unstruc-
tured mesh, in order to achieve (i) proper resolution of the steep gradients near the
hull, (i) easy implementation of the boundary conditions and (iii) convenience in
programming. However, for cases involving a very complex geometry, generation
of a structured boundary-fitted mesh can be very time consuming. An elaborate
discussion on the advantages and disadvantages of the different types of meshes
can be found in [79] and the references therein.

Here the generation of the structured boundary-fitted mesh is obtained via a
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non-singular mapping
T :x = x(€), (4.1)

where x denotes the Cartesian physical coordinates and £ the curvilinear computa-
tional coordinates, and where 7 maps the physical domain Q) onto the rectangular
hexahedron G. The Jacobian of the mapping is required to be finite:

i

ox
V= |5

<oo, i,j=1,2,3. (4.2)

Once the mapping has been established, the discretization of G, here denoted as G,
is obtained by defining the following mesh points located at §;, j = (31, 42, 53) 7

gh:{é:gjqa:jOLAgaaj()n:17"'7N(17a:17233}7 (43)

with N, € N denoting the number of grid points in the £“-direction. Here the
&l-direction corresponds to the main-flow direction, the £2-direction corresponds to
a direction normal to the hull and the &3-direction is tangential to the hull. The
details of the grid layout are discussed in Chapter 3 of [31].

4.2.2 Governing equations in curvilinear coordinates and discretization

The physical laws, which govern the free-surface flow problem, are tensor laws and,
hence, invariant under coordinate transformation. The complete flow problem in this
chapter is governed by the equations given in Section 2.2. The discretization of the
flow problem requires a decomposition of the vector equation into its components.
This is, in the case of a curvilinear coordinate system, a non-trivial matter. In the
remainder of this chapter the tensor notation is applied. The uninitiated reader
is referred to [7] for an elaborate introduction to the subject. The equations for
conservation of mass and momentum, written in curvilinear coordinates and for a
spatially invariant eddy-viscosity assumption for the Reynolds stresses, read

Te ) =0 (4.0

and

19
V9 98

Here T7% represents the momentum flux vector and is given by

(vgT7*a;) = 0. (4.5)

Ti% — UIUF 4 gFp — (ng”Ufm + gikUﬂc) : (4.6)

U’ denotes the contravariant velocity component, a; the covariant base vector and
¢’% = a7 - a* is the contravariant version of the metric tensor.

The discrete system of equations is obtained by replacing the differential op-
erators by finite differences. The order of accuracy of the various parts of the
system of equations, i.e., convection, diffusion and the pressure gradient, is the
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same as described in Section 2.3.2. This yields the following expressions for the
discrete differential operators: the &!-derivative, in the continuity equation and in
the convection term in the momentum equations, is replaced by

_ 3 _ 1
a=5 o — 25" + §E£12, (4.7a)
and the £2- and ¢3-derivatives by
po—ipiplpe _paylpe o {2,3} (4.7b)
£ gTer o e ey Tl '

where Egau =uf L is the linear shift operator. For the pressure gradient in the

momentum equations an opposite bias is applied, i.e.,

D{. = Ll

s 5 a={1,2,3}. (4.7¢)

1
0 +1 +2
Ego + EEQ — 5E5“ ,

The discrete viscous operator only consists of the £2- and &3- derivatives and is
discretized by second-order central difference schemes, see pages 64 — 65 in [31] for a
clear description. The geometric quantities are approximated by central differences.
For example, the a; covariant base vector is in discrete form approximated by

%(leJrl,j,k - 371171,3',1@)

(a1)i ik = %(3372+1gk - x?—l,j,k) . (4.8)
1
2

($?+1,j,k - ‘T?—l,j,k)

Once the discrete covariant base vectors are available, the discrete contravariant
base vector can be computed from

@ik = (@m)ijnk X (An)ijk, (4.9)

with [, m,n in cyclic order. The discrete Jacobian /g follows from

(V9igk = (- (am X an))i,jks (4.10)

again with [, m,n in cyclic order. After the discretization a change of variables is
applied, i.e., the contravariant velocity components are replaced by the grid-aligned
physical velocity components U(m) according to

U(m) =U"|a,,| (nosum over m). (4.11)

The modified system for (U(1),U(2),U(3),¢)T yields better solution properties
(better condition) than the original discrete system.

The transformation of the quasi free-surface condition to curvilinear coordinates
can be derived as follows. In vector notation the quasi free-surface condition reads

u-Vo—Fr?u-e, =0, (4.12)
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where we have assumed that the atmospheric pressure p = 0 holds at the free sur-
face. Application of the contravariant velocity components and the transformation
of the gradient of the pressure, i.e.,

Op 5 Op
axa = a(a)@, (413)
yield
ve 98 _mrgeg® o, (4.14)

g« ¢

Here we have used the fact that ag-a” = 65. The last step in the discretization
process is to convert to the grid-aligned physical velocity components, as defined in
(4.11). The quasi free-surface condition written in these variables reads

Ule) ¢ _
laa| 06~

r2U%) =0 (sum over a). (4.15)

The nonlinearity of the quasi free-surface condition is dealt with via the SOR-
Newton method. Throughout this chapter, for convergence reasons (to be analyzed
in Chapter 5), the pressure gradient in the quasi free-surface condition has to be
discretized with the O(h) upwind scheme, i.e., a% is replaced by D.. corresponding

to Ega - Egal for « = {1,2,3}, respectively.

4.2.3 Remeshing algorithm

In the free-surface algorithm, as described in the Chapter 2, we solve (either fully or
partially) a series of steady Navier-Stokes boundary-value problems with the quasi
free-surface condition imposed on the (approximate) location of the free surface.
Each iterate of the steady Navier-Stokes boundary value problem, i.e., either fully
converged, corresponding to the algorithm in Section 2.3.1, or after a single relax-
ation sweep only, corresponding to the algorithm in Section 2.5.1, generates a new
location of the free surface. In general this new free-surface location necessitates
a smoothing operation on all other mesh points. In this thesis this smoothing is
performed using a method based upon the concept of moving-mesh methods, also
known as r-refinement (the r referring to redistribution or relocation), see e.g.,
[72, 82]. Since we are considering stationary problems only, the grid velocities are
zero. One of the disadvantages of a moving-mesh approach is the possible occur-
rence of ‘mesh tangling’ (Figure 4.2).

The algorithm which is employed to redistribute the underlying mesh points is
based on the principle of equidistribution, see e.g., [62]. This method was origi-
nally derived for time-dependent PDE's, where the discrete equidistribution principle
yields the location of the mesh points according to

Ax;(t)M;(z;,t) = constant, (4.16)

where Az; = ;41 — x; and where M, (x;,t) is a suitably chosen weight function,
usually depending on the first- and second-order derivatives of the PDE solution.
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Figure 4.2: Example of crossing grid lines belonging to different families (mesh tangling). (The
dashed lines denote the initial grid.)

The redistribution algorithm employed in this thesis is described below. Let &g
be the parameterization of a curve, corresponding to the &3-direction in Gy, through
the set of discrete grid points £y(j3),j3 = 1,..., N3 belonging to the initial grid in
the physical space, see Figure 4.3.

£,(1)

Figure 4.3: Definition of 7, £o and A& in the physical space. For n >0:~v=mn. Forn <0:~
is the length of the corresponding piece of the arc.

Let £o(1) = 0 and &o(N3) = ¢y indicate the beginning and the end of the curve,
where £ is the arclength of the curve:

Ns—1

o= Ao(ja), (4.17)

jz=1
and where

A&o(js) :=&o(js+1) —&o(ga), Jz=1,...,N3—1 (4.18)
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denotes the distance, along the curve, between two subsequent grid points. Given
a new location of the free surface in the physical space, here denoted by 7, the
computation of &,(j3), j3 = 1,..., N3 — 1 follows from (4.16) with M = 1. The
distribution of the discrete grid points along the curve for the adapted grid follows

from
A&, (j3) _ Ao (j3) o
lo+ 4o
An(js) = (1+ 1) A&o(s), (4.20)

where 7 is defined as in Figure 4.3 and the displacement of each grid point with
respect to its initial position can be computed from

Jjs—1

&aljs) — Eoljs) = % 3 A& (). (4.21)
=1

The final step is to determine the (22, 23) coordinates for the given displacement
(4.21) of the grid point along the curve. Here we assume that the grid points are
connected by piecewise linear segments. Hence, the new coordinates can be found
from
g, _ [ PN y, _ y
x5 (J3 +1) — x§(js) Ao(Js)
(4.22)

where x, x§ represent the coordinates of the grid points in the new grid and the
initial grid, respectively.

4.3 Numerical results

This section contains the numerical results as obtained for the Series 60 hull. The
Froude and Reynolds number, for all computations in this chapter, are set at 0.316
and 106, respectively. The first subsection will present the results for the case of a
so-called ‘double-body’ approximation, as well as for a ‘uniform-flow linearization’.
In both approximations it is assumed that at the free surface the perturbations due
to the hull are small. No free-surface updates are computed in this first subsection.
In the second subsection the fully nonlinear free-surface flow is addressed, as well
as free-surface updates.

The computational domain, denoted by 2, extends from g in front of the
hull to £ aft of the stern and to 0.6¢ in starboard direction (only the half hull is
considered) and it contains 321 x 121 x 45 mesh points in the z-,y- and z-direction,
respectively. The hull geometry is discretized with 162 x 45 grid points and is shown
in Figure 4.4.
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Stern

Figure 4.4: Discrete representation of the half hull.

To reduce reflection from the far-field boundaries, €2;, is extended with a dissi-
pation zone as described in Section 2.4.2. The discretized computational domain,
including the dissipation zone, is shown in Figure 4.5 and is denoted by Qp. The
total number of grid points in Q, is 353 x 127 x 45.

As a reference length we take the ship’s length, ¢ = 1.
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Figure 4.5: The boundaries of the discretized computational domain €. Top figure: the inflow
plane and the plane of symmetry. Bottom figure: the outflow plane, the free surface and the

external plane.
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For all computations performed in this chapter, we take (u, ) = (1,0,0,0)T
as initial solution for the iteration process and z3 = 0 as initial estimate of the
free surface. It has to be noted here that this initial mesh does not contain any
grid point above the free surface. For the nonlinear free-surface computation the
geometry of the hull above the 23 = O-plane is simply extrapolated in the direction
of the positive z3-axis. As a result the subsequent meshes during the free-surface
iteration may be non-smooth at 23 = 0, as sketched in Figure 4.6.

The convergence criterion for the preconditioned GMRES iteration method is
set at 2 x 1073, The (nonlinear) iteration process is continued until
o™ — "o <5 x 10~ where n is the number of nonlinear iterations.

Figure 4.6: Sketch of the non-smooth extension of the mesh occurring during the nonlinear
free-surface updates.

4.3.1 Two approximations of free-surface flow

To handle the nonlinear quasi free-surface condition (2.7), two approaches can be
followed. Either some form of approximation of the free-surface flow problem can
be applied, still maintaining the nonlinearity of the underlying (bulk) flow problem,
or a fully nonlinear approach. The approximation approach is addressed in this
section. In case of approximation several forms are conceivable, e.g., approximation
by means of a ‘double-body’ solution or linearization around a uniform (horizontal)
flow. A comprehensive study of the various forms of linearization of the free-surface
conditions, for irrotational-flow methods, is given in [60].

‘Double-body’ approximation

The ‘double-body’ approximation is most likely to be valid for low Froude numbers.
The corresponding theory is named slow-ship theory. This theory assumes that the
free-surface flow can be decomposed into the flow around the hull having a flat
water surface, hence its name, and a small perturbation. The boundary conditions
imposed on the free surface (22 = 0) in the ‘double-body’ approximation are

out ou?

— — 3 _
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As an example, we have computed the pressure distribution on the free surface
belonging to the ‘double-body’ solution for the Series 60 hull at Fr = 0.316 and
Re = 10°, see Figure 4.7. Note the absence of the Kelvin wedge. This is due to
the symmetry conditions (4.23) imposed at 23 = 0.

03—

0.25 —

0.2

0.15

0.1

w2 0.05

-0.05

| | | |
-0.2
-1 -0. .

Figure 4.7: Computed pressure distribution (top figure) and corresponding waterline in the plane
of ‘symmetry-and-hull’ (bottom figure) corresponding to the ‘double-body’ solution. The hull is
located at —0.5 < x < 0.5.

To obtain some insight into the development of the viscous regions, i.e., the
boundary layer and the wake, we have plotted the iso-contours of the axial velocity
component for some cross-sections of €2, in Figure 4.8.
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Figure 4.8: Computed ul-contours, for the ‘double-body’ calculation, in cross-sectional planes:
x = —0.4 (top left), z = 0 (top right), x = +0.4 (bottom left) and x = 40.54 (bottom right).

Contour-line increment is 0.025.

The boundary layer clearly appears to grow very rapidly due to the adverse
pressure gradient as the cross-sectional area decreases towards the rear of the hull.
The convergence history for the equations is shown in Figure 4.9.
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Figure 4.9: Convergence history of the inner-iteration process, R is the residual of the con-
tinuity equation (A), the z-momentum equation ([J), the y-momentum equation (), and the

z-momentum equation (V), measured in Loo-norm.

The large jumps in the residuals are due to the application of the grid-sequencing
strategy.

‘Uniform-flow’ linearization

The uniform-flow type of linearization presupposes the existence of the decomposi-
tion

ux) = U+ed(x)+0(), (4.24a)
p(x) = ®+ep(x)+ O(?), (4.24b)

as € — 0. The perturbation parameter ¢ could represent Fr?, since the case Fr? = 0
constitutes no free-surface waves. Here U = (U,,0,0)7 and ® = 0 represent
the uniform (horizontal) flow. Of course, this assumption ceases to be valid near
the hull. Due to the non-permeability and no-slip conditions, there the perturba-
tion velocity is O(1). We assume that outside the boundary layer, the wake and
the stagnation region, the decomposition (4.24) holds. The linearization (4.24)
automatically implies a decomposition of the free surface as

n(zt, 2% = no + e (z*, 2?), (4.25)

with 79 = 0 corresponding to the undisturbed flow and with ||| < 1. Application
of this linearization to our free-surface method results in imposing, at 2% = 7o, the
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linearized form of the quasi free-surface condition which reads in mixed contravari-
ant/Cartesian velocity components:

dp -2.3
The other boundary conditions imposed on the free surface are, physically seen, the
same as the first two in (4.23):
out ouU?
13 23
7°=0=>——==0 and 7™ =0=> — =0, 4.27
o963 963 (4.27)
where U' and U? are the contravariant velocity components. -

In our numerical computations, in (4.26) we have replaced U, by Ul, ie.,
the local contravariant velocity component, in the &!-direction, from the previous
iteration. This corresponds to a Picard-type linearization of the incomplete quasi
free-surface condition (incomplete because of the absence of the Uzg—g‘@ + U3g—£‘@
term). The discretized quasi free-surface condition yields

UjDapj — Fr2uf =0, (4.28)

where Dy, corresponds to the O(h)-upwind scheme.

The computed wave elevation ( is shown in Figure 4.10. As opposed to the
‘double-body’ solution presented in Figure 4.7, the present computed wave pattern
already clearly reveals the presence of the Kelvin wedge. So, notice the strong
influence of only replacing the kinematic boundary condition U2 = 0 at the water
surface by the quasi-free surface condition: no Kelvin wedge versus a Kelvin wedge!
Further downstream, and particularly more outboard, the solution still seems to
lack the necessary accuracy when making comparisons with, e.g., the free-surface
Navier-Stokes results presented in [23], see Figure 4.11.

Figure 4.10: Computed wave pattern ¢ corresponding to the uniform-flow linearization.
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A further comparison of the computed wave pattern with results from measure-
ments, taken from [74], is made in Figure 4.12. This comparison shows a fairly
good agreement for the wave cut at ¥ = 0.0755. Further away from the hull, the
amplitude of the computed wave elevation seems to be somewhat too small. This
may be attributed to the linearization and to the numerical damping due to the
first-order discretization of (4.26).
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Figure 4.12: Comparison of the computed longitudinal wave cuts (—) with experimental results

(O0). Left figure: ¥ = 0.0755, right figure: ¥ = 0.2067, ¥ = 0 corresponds to the plane of

symmetry.
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Figure 4.13 reveals some insight into the deviation of the solution from the
uniform flow. This figure shows the deviation of the magnitude of the velocity from
the uniform flow velocity Uy, i.e.,

[[ull2 = Uso

A =
Uso

; (4.29)

where |[ufls = (u,u)z. As expected, the major deviations from the uniform flow
occur in the boundary layer, wake and the bow and stern region. Outside these
regions the deviation is very small, thus confirming the validity of the linearization
there.

L

y 0.5 0 0.5 ] 1.5 2

Figure 4.13: Computed spatial distribution of A on the free surface. The hull is located at
Fee<t

The iso-contours of the axial-velocity component are plotted in Figure 4.14.
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N
o%°

Figure 4.14: Computed u!-contours, for the uniform-flow linearization, in cross-sectional planes:
x = —0.4 (top left), z = 0 (top right), x = +0.4 (bottom left) and z = +0.54 (bottom right).

Contour-line increment is 0.025.

Comparing Figure 4.14 with 4.8 shows the effect of replacing the symmetry
conditions, imposed on 23 = 0, by the (linearized) quasi free-surface condition.
The fact that at = = 0 (Figure 4.14, top right), the boundary layer is thicker at the
free surface than at some distance below it, must be caused by a pressure gradient
in the z-direction which is larger at the free surface than below it.

The convergence history for the equations is shown in Figure 4.15. The large
jumps in the residuals of the equations are again due to the grid-sequencing strategy
which was employed. The computation on the finest grid starts at n;,,ne = 150 and
the residuals converge in less than 100 iterations to below the specified tolerance.
Comparing Figure 4.15 with Figure 4.9 shows that the (qualitatively much better)
solution of the ‘uniform-flow’ linearization is obtained at a significantly (4 times)
higher computational cost than that obtained with the ‘double-body’ approximation.
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Figure 4.15: Convergence history, for the ‘uniform-flow' linearization, of the inner-iteration
process, R is the residual of the continuity equation (A), the z-momentum equation ([J), the
y-momentum equation (O), and the z-momentum equation (V), measured in Loo-norm.

As already mentioned in Section 3.3.3, our new free-surface iteration method
does not suffer from conflicting boundary conditions at the intersection of the free
surface and the no-slip boundary. Hence, in the numerical algorithm the quasi
free-surface condition can be imposed over the entire free surface. Therefore, of
particular interest is the interaction of the boundary layer and wake with the free
surface. The current algorithm reveals the presence of waves with high wave num-
bers in transverse direction in this region, as can already be observed in Figure 4.10
and in more detail in Figure 4.16. These short waves originate at the bow and
develop in streamwise direction until the stern is reached. At the stern they have
damped out. The grid points, as marked in Figure 4.17, clearly show that these
waves which are short in transverse direction (in the remainder briefly called: short
waves) are not ‘odd-even grid-point waves’. We think that the short waves are
physically correct. More widely interpreting Lighthill's theory about surface gravity-
waves for water of uniform depth (Section 3.3 in [50]), our conjecture is that inside
the boundary layer around the hull, at local flow speeds lower than the far-field flow
speed, short stationary surface gravity-waves (which also satisfy the dispersion rela-
tion relating flow speed and wavelength) can co-exist with the long stationary wave
corresponding with the far-field flow speed. To our knowledge, the short waves have
not been observed yet in published free-surface Navier-Stokes flow computations for
this Series 60 test case.

As mentioned, when the stern is reached the short waves have already dis-
appeared. Furthermore, they very quickly damp in vertical direction (negative z-
direction). Their amplitudes decay as e**, where k is the local wave number (see
Section 3.2 in [50]). (The zero-stress conditions imposed at the free surface are
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responsible for the generation of this free-surface boundary layer.) In the current
mesh the minimum distance of the first layer of grid points underneath the free
surface is approximately 2 x 1073, So any free-surface wave with a half wavelength
smaller than this is not noticed anymore in the first grid-point layer underneath the
free surface. The free-surface boundary layer cannot be resolved on the current
mesh due to insufficient resolution in the z3-direction.
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Figure 4.16: Computed wave elevation ¢ at the free surface (solid) and at the first layer of nodes
underneath the free surface (dashed) for z < 0 (left figure) and = > 0 (right figure).



82 Numerical Simulation of 3D Steady Free-Surface Flows around a Ship Hull

-0.05

-0.15

-0.25

0.05

0.075 0.1 0.125 0.15

Figure 4.17: Computed wave elevation ¢ at the free surface (solid) and at the first layer of nodes
underneath the free surface (dashed) for z = 0 (top figure) and a magnification of the two curves

in the region near the hull (bottom figure). Only every second marker is shown.
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Concerning the question to what extent these short waves in the free-surface
boundary layer contribute to a ship’s total drag, the conjecture is that this is very
little, in general. As such, trying to resolve them more accurately does not seem to
be necessary.

4.3.2 Nonlinear free-surface method with remeshing

So far, our remeshing algorithm, described in Section 4.2.3, has not yet been applied.
We will do so in the present section. The short waves have a negative effect on the
quality of the new grids generated by our remeshing algorithm. The short waves
appear to lead to grids which suffer from mesh tangling, precisely in the short-wave
region. Our provisional remedy against this is to resolve the waves less accurately
in transverse direction by taking a somewhat coarser mesh in the x2-direction. This
may go at the expense of the resolution of the boundary layer and wake. Another
remedy would be to explicitly damp the short waves, which is not trivial for the
general case, given the presence of the long waves. A genuine remedy would be
to make the remeshing algorithm robust against these short waves. This could be
achieved by applying the elliptic grid generator, used for the initial grid, for every
new grid.

An approximation of the nonlinear free-surface solution is computed with the aid
of the modified free-surface algorithm, as described in Section 2.5.1. The coarsened
mesh is extracted from €, by specifying the minimum mesh width in z2-direction
to satisfy Az? > 1.25 x 1073, This results in a mesh with 69 instead of 127 grid
points in x2-direction. The complete quasi free-surface condition is imposed on
the approximate locations of the free surface during the iteration process, and the
mesh is adapted to the new free-surface location, following the remeshing algorithm
proposed in Section 4.2.3. Here, in the solution process, (4.14) is treated using
Newton's method and the pressure gradient Vo is discretized employing the O(h)-
upwind scheme, yielding

U Deapj + U Deapj — U Do — Fr™2u = 0, (sum over o), (4.30)
where Dga = Ega — Eg(} and ~ denotes a value from the previous iteration.

The computed wave pattern obtained with our nonlinear free-surface method
is shown in Figure 4.18 and a comparison with the experimental data is made in
Figure 4.19.
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Figure 4.19: Comparison of the computed longitudinal wave cuts (—), obtained with the non-
linear method, with experimental results (). Left figure: % = 0.0755, right figure: ¥ = 0.2067,

¥ =
% = 0 corresponds to the plane of symmetry.

A comparison of the Figures 4.18 and 4.10 reveals a difference in the computed
wave pattern at the outer edge of the Kelvin wedge. The third extremum, computed
with the fully nonlinear algorithm, is less developed. This also clearly appears from
comparison of Figure 4.19 and 4.12. Comparison of Figure 4.18 and the Navier-
Stokes results in Figure 4.11 shows a fairly good resemblance.

The development of the boundary layer along the hull and in the wake is shown
in Figure 4.20.
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Figure 4.20: Computed u'-contours, for the fully nonlinear calculation, in cross-sectional planes:
x = —0.4 (top left), z = 0 (top right), x = +0.4 (bottom left) and z = +0.54 (bottom right).

Contour-line increment is 0.025.

For comparison purposes we repeat the ‘uniform-flow’ computation on the current
grid, i.e., the grid with 69 grid points in the y-direction. To study the effect of
the coarsening on the resolution of the boundary layer we plotted the axial velocity
contours obtained with this computation in Figure 4.21.
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o091

Figure 4.21: Computed u'-contours, for the ‘uniform-flow' calculation on the coarsened grid,
in cross-sectional planes: © = —0.4 (top left), x = 0 (top right), x = +0.4 (bottom left) and
x = 40.54 (bottom right). Contour-line increment is 0.025.

From a comparison of Figures 4.21 and 4.14 it can be concluded that the thickness
of the boundary layer and the wake has increased, with the coarsening of the mesh.
Comparing Figure 4.21 with Figure 4.20 reveals that the linearization of the free
surface does not have a large effect on the boundary layer. This suggests that for the
computation of the viscous drag a linearization of the free surface effect is sufficient.
However, for the wave drag this is questionable. Figure 4.22 reveals significant
differences between the linearized and nonlinear free-surface shape. Comparison of
Figure 4.22 and 4.12 suggests that the coarsening in the y-direction (69 instead of
127 grid points) has also influenced the wave pattern.
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Figure 4.22: Comparison of the computed longitudinal wave cuts, obtained with the nonlinear
method (solid) and the ‘uniform-flow’ linearization method (dashed), with experimental results
(markers). Left figure: ¥ = 0.0755, right figure: ¥ = 0.2067, 4 = 0 corresponds to the plane of

symmetry.

The convergence history for the ‘uniform-flow' linearization case on the 353 x
69 x 45 grid is shown in Figure 4.23.

10"

~
Q»\

infinity

IR
3

10°

-3
0 50 100

Miner

Figure 4.23: Convergence history of the inner-iteration process for the ‘uniform-flow' computa-
tion on the 353 X 69 x 45 grid, R is the residual of the continuity equation (A), the z-momentum

equation (O), the y-momentum equation (), and the z-momentum equation (V), measured in

Loo-norm.

For the nonlinear free-surface computation, the convergence histories for the
residuals of the equations and the free-surface pressure defect are still shown in
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Figure 4.24. The large jumps in the residuals of the equations are again due to the
grid-sequencing strategy. The iteration on the finest grid starts at n = 64. The
modified free-surface algorithm is activated once the finest grid has been reached.
The total computational work, measured in the number of nonlinear iterations, is
a factor 1.67 larger, for the nonlinear computation, than for the computation with
the ‘uniform-flow' linearization.
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Figure 4.24: Convergence histories for the O(h)-upwind discretization of the quasi free-surface
condition on the coarsened mesh computed with the modified algorithm. Left: of R, the residual
of the continuity equation (A), the z-momentum equation (0J), the y-momentum equation (O),
and the z-momentum equation (V). Right: of the free-surface pressure defect; measured in the
Li-norm (0), La-norm (A), and Loo-norm ().

4.4 Conclusions

The topic of this chapter was the application of the new 3D free-surface algorithm,
as introduced in the previous two chapters, to a practical application originating
from the field of numerical ship hydrodynamics. The test case in this chapter was
the computation of the complete flow field, i.e., including the wave pattern, of the
Series 60 hull at Fr = 0.316 and Re = 10°.

From the numerical results it can be concluded that the mechanism of free-
surface flow computation with the 3D quasi-free surface condition imposed on an
approximate location of the free surface yields the proper 3D wave physics. It also
shows that a fairly accurate estimate of the wave pattern can be obtained from a
linearization of the quasi free-surface condition around a uniform flow. (As expected,
the ‘double-body’ approximation yields very inaccurate results for this test case.) In
the case of ‘uniform-flow’ linearization, still no remeshing has to be performed. This
method is very suitable for obtaining a first indication of the viscous free-surface
flow. A more refined approximation of the wave pattern requires the solution of the
fully nonlinear free-surface flow problem. The results presented here suggest that
also for ship-hull flows the modified algorithm can significantly reduce the CPU
time.
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A further benefit of the current method is that no special measures have to
be taken to circumvent the incompatibility of the kinematic free-surface condition
and the no-slip boundary condition in case of a free-surface penetrating object.
The numerical results have shown that in the viscosity-dominated regions a high-
wavenumber wave is present, of which the existence is not known from classical
analytical theory on water waves. The relative importance of the contribution of
this wave to the total drag is expected to be negligible.

The discretization of the quasi free-surface condition as applied in the fully
nonlinear free-surface algorithm was first-order accurate. So far, no converged re-
sults could be obtained with the second-order discretization of the quasi free-surface
condition. It could be that an even larger chance of mesh tangling in case of second-
order discretization is one cause of this. In the next chapter we will also formally
analyze the existence properties of steady free-surface waves for both the O(h?)
and the O(h) upwind discretization of the quasi free-surface condition.

To prevent the present remeshing algorithm from generating tangled meshes, the
waves which are short in transverse direction (called here the short waves) may need
to be damped in transverse direction, or simply resolved less accurately on a coarser
grid in transverse direction. Both fixes are acceptable if the short waves are already
poorly resolved in vertical direction. The latter may easily happen since, according
to theory, the short waves damp out very rapidly in this direction. A difficulty
of damping the short waves is to avoid damping the long waves. A drawback of
resolving on a coarser grid in transverse direction is that both the viscous phenomena
and the wave phenomena are resolved less accurately. A genuine remedy against
mesh tangling could be the application of a well-proven (elliptic) grid generator after
each free-surface update. We still remark that a capturing method would not have
difficulties with short waves.

The main conclusion of this chapter is that the computation of steady ship-hull
flows with both free-surface and viscous effects can be done efficiently through the
quasi free-surface condition and the modified algorithm.
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CHAPTER 5

Analysis of Continuous and Semi-Discrete
Water-Wave Problem

5.1 Introduction

In this chapter we analyze the solution behaviour for the continuous as well as the
discretized Navier-Stokes equations, with the quasi free-surface boundary condition
imposed at a boundary. The analysis proceeds using classical perturbation methods,
linearization and Fourier techniques. We consider the generic problem of pertur-
bations on a uniform horizontal flow in infinitely deep water in two dimensions. In
Section 5.2 the analysis is performed for the continuous equations: in Section 5.2.1
for the full Navier-Stokes equations and in Section 5.2.2 for the reduced Navier-
Stokes equations as model for the bulk flow. Section 5.3 analyzes the system
of modified equations, which results from the semi-discrete reduced Navier-Stokes
equations: Section 5.3.1 for a second-order accurate discretization of the quasi free-
surface condition and Section 5.3.2 for the first-order upwind discretization of this
condition.

5.2 Analysis of continuous problem

We consider a linearized model problem similar to the one approximated in Chapter
2, but with the difference that we do it here in R2 instead of in R3. The behaviour
of free-surface perturbations imposed on the uniform horizontal flow is studied. We
assume a perturbation expansion in powers of ¢ of the form

a(x, t;e) = Q(x,t) +ed/(x,t) + O(e?), ase— 0, (5-1)

and
n(x,t;€) = H(z,t) + en'(z,t) + O(?), ase — 0, (5.2)

where q'(x,t) = (0'(x,1),¢'(x,t))T. The unperturbed flow velocity and pressure,
denoted by Q(x,t) = (U(x,t), (x,1))T, and the unperturbed water height, de-
noted by H(z,t), are

U(x,t) = (U,0)7, U = constant, ®(x,t)=0 and H(x,t)=0. (5.3)
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From definition (2.3) it follows, assuming p = 0 on the free surface z = n(z,t), that
the water height can be directly expressed in terms of the hydrodynamic pressure:

n(x,t) = Frlp(x,t). (5.4)

Hence, through (5.4) the unknown n(z,t) is effectively removed.

Substitution of the power series (5.1) into the full Navier-Stokes equations and
neglecting the second- and higher-order perturbation terms, yields, upon deleting
the primes, the following system of linear equations

w+U-Vu+Vp—Re 'Au = 0, VY(x,t)eQxT, (5.5a)
V-u = 0, VY(x,t)eQxT, (5.5b)
which are supplemented with suitable initial and boundary conditions to yield a

well-posed problem.
Our spatial domain € is defined as

Q={xecR?:2¢€(-mmn),z€ (n—o0)k (5.6)

Since we are considering the flow in infinitely deep water in z-direction, the domain
Q is only bounded by the free surface z = n(x,t), at which the solution has to
satisfy the quasi free-surface condition, which reads in perturbation form:

01+ U-Vp—Fr2u-e, =0, (5.7)

and may be imposed on z = H(z,t) for a consistent linearization upto O(e?). For
z | —oo the uniform flow solution is imposed. Furthermore, we assume periodicity
of the solution q := (u, )7 in z-direction, i.e.,

q(—m,z) = q(m,z). (5.8)

5.2.1 Fourier analysis of full Navier-Stokes equations

To construct a Fourier representation of the solution q(x,t) consider the following
isolated mode , ,
q(x,t) = q(k, s, w)eketsz-ivt (5.9)

where k, s € R are the wave numbers in - and z-direction, respectively, and where
w € R is the radial frequency. Substitution of (5.9) into (5.5) yields

L(k, s, w)q(k, s, w)eke+sz=iwt — g, (5.10)
with L(k, s,w) representing the Fourier symbol of (5.5):

H(k,s,w) 0
L(k,s,w) = 0 H(k,s,w)

k
L(kys) |, (5.11)
Do(k,s)  D.(k,s) 0
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where H(k,s,w) := —iw + ikU — Re™!(s2 — k2) is the Fourier symbol of the
convection-diffusion operator, G(k, s) = (ik, s)T the Fourier symbol of the pressure
gradient and D(k, s) = (ik, s)” the Fourier symbol of the divergence operator divu.
A nontrivial solution of (5.10) exists only if

a(k, s,w) € N(L(k, s,w)) < det(L(k, s,w)) = 0, (5.12)
where A represents the nullspace. Expanding the determinant condition yields

H(k, s,0) (éwﬁw + ézbz) =0 & Ak s,w)(k — s2) = 0. (5.13)

The various roots of (5.13) generate the following bases of NV (L(k

1
if w,k,s=0, span 0 (5.14a)
0
and otherwise .
G (k)
if k>—s?>=0, span G.(k) , (5.14b)
—H(k,w)
G (k)
if H(k,s,w)=0, span —Go (k) . (5.14¢)
0

The space spanned by (5.14a) corresponds to constant modes. These are not of
interest to us. The spaces spanned by (5.14b) and (5.14c) are of interest and corre-
spond to the inviscid modes and the viscous modes, respectively. This terminology
has been adopted from Chapter 3 of [12]. Note that the condition k2 —s?2 =0
removes the viscous contribution from H(k,s,w). Considering only the inviscid
mode, the solution can be written as

Ga(k) ) |
q(z,2,t) = G.(k) | ethrthemivt (5.15)
—H(k,w)
where we have used the fact that for

lim u(x,t)=0=s=+k, kecRT. (5.16)

z]—o0

This solution also has to satisfy the quasi free-surface boundary condition (5.7) on
z = H(x,t). This yields the following condition on &k and w

iwH (k,w) —iUkH (k,w) — Fr 2k = 0. (5.17)
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Condition (5.17) is known as the dispersion relation. Here the roots wy o of the
dispersion relation can be calculated explicitly

w12 = Uk + VF k. (5.18)

If (5.18) is substituted into (5.9), it follows that an isolated Fourier mode behaves

as
pika—i(UktVEr—2k)t (5.19)

These waves are known as surface gravity waves. They move with phase velocity

c(k)=U+ VFr k-1 (5.20)

Note that for U = 0, i.e., moving the frame of reference with the flow, the familiar
dispersion relation for waves propagating in still water is obtained, [80]. Also the
wave energy of the gravity waves travels with the group velocity, which is defined

as
d 1
Ky SVEkL, (5.21)

dk

For an observer traveling with the flow velocity U the group velocity is exactly half
the phase velocity. This means that the observer traveling with the flow velocity,
will always see waves with single wave number k and frequency w(k), as opposed
to an observer following a particular crest, who will see waves with different wave
numbers k.

Since we are only interested in the stationary problem the dispersion relation is
determined by (5.18) for w2 = 0. This yields

U?k = Fr2. (5.22)

This relation determines the wave number & of waves which can keep a steady
position against the oncoming stream. This complies with the result already derived
in [50]. The dispersion relation (5.22) can also directly be obtained from a steady
formulation of the initial boundary-value problem (5.5) — (5.7). Both formulations,
the steady and the unsteady for ¢ — o0, lead to a wave solution satisfying dispersion
relation (5.22).

5.2.2 Fourier analysis of reduced Navier-Stokes equations

Now we will analyze the effects of neglecting the streamwise diffusion in the Navier-
Stokes operator. Hence, the Laplacian in (5.5) is replaced by

A:=8% inR2 (5.23)

Following the same analysis as above, the Fourier symbol of the convection-diffusion
operator is now defined as

H(k,w) := —iw + ikU — Re™ k2, (5.24)
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where we have used condition (5.14b). Observe that, for the reduced Navier-Stokes
equations, the condition (5.14b) does not remove the viscosity completely. Substi-
tution of (5.15), with H(k, s,w) defined as (5.24), into (5.17) yields the dispersion
relation for the reduced Navier-Stokes problem. Also in this case the roots w; 5 can
be calculated explicitly, giving

1 1
wio=Uk+ 5\/4F1r2/c — Re 2k + iEReflk? (5.25)

Hence, if (5.25) is inserted in (5.9), it follows that a surface gravity wave for the
reduced system behaves as

1Re k2t ikx—i 1 —2L_Re—2k4
62Re ktev,k.t i(Uk+£51/4Fr—2k—Re k)f (526)

Only when neglecting the viscous terms completely, this reduced-system surface
gravity wave moves with the same phase and group velocity as in the full Navier-
Stokes case, i.e., with the velocities (5.20) and (5.21), respectively. Following
the same line of reasoning as for the full Navier-Stokes equations, shows that no
steady waves can exist for finite Re. (Note that the possibility of a negative sign
of the term under the square root (4Fr—?k — Re™?k*) does not alter this.) The
steady waves that are possible for the full Navier-Stokes equations, i.e., which satisfy
the dispersion relation (5.22), reveal an exponential growth in time in case of the
reduced Navier-Stokes equations, a growth which is proportional to Re™" and %2.
This suggests that this formulation of the free-surface flow problem is formally
ill-posed. However, the measure of ill-posedness is small for large Re.

The equations considered in the preceding chapters are all in steady form. Re-
peating the analysis for the steady formulation of the equations and postulating a
solution of the form e?***5% with k, s € R, yields the following expressions for the
convection-diffusion operator

H(k) := ikU — Re ™ 'k2, (5.27)
where we have again used s? = k? (= s = +k), and the quasi free-surface condition
—ikUH(k) —Fr %k =0 <& Re UK+ U*>-Fr2%k=0.  (5.28)

From (5.28) it is immediately clear that the inviscid limit yields the familiar disper-
sion relation (5.22). Note that (5.28) has no real solutions other than the trivial
solution £ = 0. As expected, this steady analysis yields the same outcome as the
foregoing unsteady analysis. If one would allow k,s € C then the solutions of the
cubic equation (5.28) would be

kl = 0, and kg’g = g + ZC, Wlth

= iReU\/Q (\/1 L 16U—5Re 2Fr 7 — 1),

¢ = LReU <1 + é\/2 (Vi+160-0Re 2R + 1)) :

(5.30)
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which does allow a wavy solution, but a solution which damps out very quickly in
z-direction for Re > 1.

We proceed by doing analyses for the unsteady equations. The unsteady results
to be obtained have a direct meaning for the steady equations as well; if no steady
solution can be found for the unsteady formulation, then it also does not exist for
the corresponding steady formulation either.

5.3 Analysis of semi-discrete problem

5.3.1 For second-order accurate discretization of quasi free-surface condi-
tion

In this section we study the combined effect of the different truncation errors on the
behaviour of the numerical approximation of the free-surface flow. For this purpose
we consider the 2D, reduced Navier-Stokes equations from Section 5.2.2, discretize
these in space according to (2.12) — (2.14), and next derive the corresponding
system of modified equations. For a semi-discretization on a uniform Cartesian grid
with mesh width A this system reads

_ 2 3 _ 2

Uy + U’LLI + SOI - Re luzz - U%uxxm + %@xzmx + Re l%uzzzz + O(h4),
_ 2 3 12

W + Uwa, + <Pz - Re 1wzz = U%wlitl + ;l_g(pzzzz + Re 1%wzzzz + O(h4)7

Uy + W, = h_;u.tmm + }f_;wzzzz + O(h4)7
(5.31)
as h — 0. On the free-surface boundary z = H(z,t), the modified quasi free-surface
condition

h2
o +Upy —Fr 2w = U?gamm +0O(h?), ash—0, (5.32)

is imposed. For z | —oo we assume that the uniform horizontal flow is recovered,
and periodicity is assumed in x-direction.

We proceed by applying the same Fourier approach as in Section 5.2. Substitu-
tion of an isolated wave solution (5.9) into the system of modified equations (5.31),
neglecting the higher than O(h?) terms, results in the following Fourier symbol

Hy(k, s,w) 0 Gt
ﬁh(k, sw) = 0 ﬁh(k,s,w) szh , (5.33)
ﬁx h lA)z,h 0

with

R h2k2 h2 2
Hy(k, s,w) == —iw + Uik (1 +— > —Re's? (1 + 1; ) : (5.34)
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representing the Fourier symbol of the discrete convection-diffusion operator. The
Fourier symbol of the discrete pressure gradient is given by

Gy = (ik, )", (5.35)
and .
21.2
D), = ik (1 + %s) (5.36)

represents the discrete Fourier symbol of the divergence operator. From a straight-
forward analysis it follows that if the condition, originating from condition (5.14b),

212
k> <1+h3k )—52:0 (5.37)
is satisfied, then
Gh,w
span Gh.. (5.38)

—Hy,(k, s(k),w)

constitutes a basis of N'(Ly(k,s(k),w)). From (5.37), it follows that by good
approximation for h | O:

h2k?
s(k) = £k <1 + 6 ) . (5.39)
The corresponding solution of the system of modified equations is

éh,w
qh(.’E,Z,t) = CAVVh,z
*Iflh(ka S(k)7w)

E e DT

where we have used the positive root of (5.39) due to the fact that for z | —co the
solution perturbations are zero.

The dispersion relation for the modified problem follows by substitution of this
solution into (5.32) yielding

iwﬁh — UZ'fCIA{h — Fr_QCA?;LZ =0, (5.41)

which has the roots

-1 1
wip = Uk + 5\/4F1r25 —Re*8! +izRe”' &, (5.42)

where we have introduced the following short-hand notations

_ 27.2 2.2
k;:k<1+hk), 52;:52<1+h8), (5.43)

3 12
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. . 2 2 . .
and in which s = &k (1 + %) Note that, as for the continuous equations, due to

the presence of the positive imaginary Re ~!-term, according to this Fourier analysis,
here steady waves cannot exist either. (And, again, the sign of the term under the
square root cannot change this.)

In the inviscid limit, (5.42) reduces to

h2k? h2k?
wi o =Uk (1 +— ) + \/Fr2k (1 +— > (5.44)
A stationary wave exists if
h2k? h2k?
Uk 1+ =P (1+ : (5.45)
3 6
Expansion of this result for h — 0 yields
h2k?
Uk (1 + = ) =Fr 2 (5.46)

This relation implies that for fixed U and Fr, k decreases with increasing h. l.e.,
the coarser the mesh, the larger the length of the free-surface wave. Using the fact

that for h = 0 the solution k of (5.46) reads k = m for small h we take as the
solution: .
k= ——=(1 1. A7
R < (547)
$ubstitution of (5.47) into (5.46) yields, neglecting higher-order terms, € = %
ie.,
1 $h?
F=—e (1 - 22— ). 5.48
(UFr)? ( (UFr)4) (5.48)

We investigate the correctness of (5.48) for the experimental results depicted in
Figure 2.13. To obtain these results we have applied three grids with in z-direction
the mesh sizes % h and 2h, with h = 8%. For U and Fr we have taken U = 1 and
Fr = 0.6. Through the wavelength relation A\ = 2T, according to (5.48) it should
then hold:

Ap =227, Ay =231, Aoy =248, (5.49)

with Ap—g = 2.26. Detailed observation of the results depicted in Figure 2.13 shows
that the above, analytically found wavelengths are quite accurate, thus proving that
(5.48) is not only of qualitative value but even of quantitative value. This is the
promised, more rigorous analytical explanation for the behaviour of the dispersion
error observed in Figure 2.13.

Note that the above error term does not solely come from the truncation error
of the quasi free-surface condition. This can be verified by redoing the analysis
for the exact reduced Navier-Stokes equations and the modified quasi free-surface
condition (5.32). Then, in Fourier form, the quasi free-surface condition reads

iwH — UikH — Fr %G, = 0, (5.50)
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with H = —iw + Uik — Re™ k2, G, = k and k = k (1 + %) In the inviscid
limit this yields

h2k? h2k2\ 2
w12 =Uk <1+ G )i\/(UW( S ) + Fr2k. (5.51)

Hence, for steady waves it holds

21.2
Uk (1 - h; ) =Fr?, (5.52)

which differs from (5.46), but which agrees — as expected — with the early result
(2.26) as far as it concerns the error term.

5.3.2 For first-order upwind discretization of quasi free-surface condition

In Section 4.3 we considered the results belonging to the O(h)-upwind discretization
of the quasi free-surface condition. The effect of this discretization on the quasi
free-surface condition is analyzed in this section. The modified equation belonging
to the O(h)-upwind discretization is

h
0+ Upy —Fr 2w = U e+ O(h?), ash —0. (5.53)

Applying the Fourier-transform to the previous expression and substitution of the
solution (5.40) into the Fourier-transformed quasi free-surface condition yields the
following expression for the dispersion relation

. hk? . N
iwHy, — (ik + T)UH;,, —Fr %Gy, =0, (5.54)

where Hj, is according to (5.34) and G, . = s. Equation (5.54) leads to a quadratic
equation for w which, neglecting the O(h?) term, has the following zeros:

2Uk +i(Re~'s> — BUK?) £ /4Fr %5 — (Re™"'s2 + BUK2)?
2

w2 = (5.55)

Note that now, as real part of the solution, we have (at least) e(Re™ =3U)K*t \where
we have again neglected the O(h?) terms. Whereas for both the exact equations
considered in Section 5.2 and the O(h?) modified equations considered in Section
5.3, the time behaviour is always exponentially growing, with the O(h) upwind
discretization of the quasi free-surface condition, it can be exponentially decreasing,
i.e., it can lead to a steady wave. A steady wave is obtained if Re™ ! — %U < 0,
i.e., if

UReg > 1. (5.56)

Considering the case U = 1, £ = 1, where £ is the reference length, this means
that for mesh Reynolds numbers Reh > 2 we may obtain steady waves due to the
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numerical diffusion introduced by the O(h) upwind discretization of the pressure
derivative in the quasi free-surface condition. In practical computations, with h =
Re~ 2, condition (5.56) is easily satisfied. It has also been satisfied in all our
computations in Chapter 4 with the O(h) upwind discretization of the quasi free-
surface condition. The current analytical result might partly explain why for the
Series 60 hull computations we have obtained convergence and divergence with the
O(h) and O(h?) discretization of the quasi free-surface condition, respectively.
In the inviscid limit, (5.55) reduces to

Uk — iBUK? & | [AR 25 — B212

w2 = 5 , (5.57)
from which it follows that a steady wave satisfies the dispersion relation
(1 + hi?) U’k =Fr? (1 + %) , (5.58)
which can be rewritten by good approximation as
U’k (1 - 3th:?) =Fr 2 (5.59)
48

First note that despite the O(h) discretization of the quasi free-surface condition,
the error in k for steady waves is O(h?). The O(h) error appears to influence the
time accuracy only. In the same way as in Section 5.3.2, as the approximate solution

of (5.59) we find
1 5 A2
b= e (1 * Zsm) - (5.60)

Note that the discretization error in (5.60) is even smaller than in (5.48), and that as
opposed to (5.48), (5.60) predicts a shortening of the wavelengths when coarsening
the mesh.

5.4 Conclusions

For the exact, 2D equations we have found the remarkable result that when im-
posing the quasi free-surface boundary condition (and when linearizing, considering
periodicity in z-direction, infinitely deep water, and a Fourier form of the solution),
steady free-surface waves can exist for the full Navier-Stokes equations and their
inviscid limit (the Euler equations), but not for the in-between equations which the
reduced Navier-Stokes equations are. Steady free-surface waves cannot exist either
for the O(h?) discretized reduced Navier-Stokes equations in combination with the
O(h?) discretization of the quasi free-surface condition. However, for the O(h?)
discretized reduced Navier-Stokes equations in combination with the O(h) upwind
discretization of the quasi free-surface condition, steady waves can exist if the mesh
Reynolds number is larger than 2. It is noteworthy that the dispersion error for
these latter waves is not yet of first order but still of second order.
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The analysis performed in this chapter explains why in Chapter 4 we could obtain
steady free-surface waves with the O(h)-upwind discretized quasi free-surface con-
dition and why we could not obtain these waves with the O(h?)-upwind discretized
quasi free-surface condition. (Given the negligible influence of viscous phenomena
in Chapter 2, there the O(h?) discretization of the quasi free-surface condition did
yield steady free-surface waves.) Computations with the full Navier-Stokes equa-
tions and the O(h?)-upwind discretization of the quasi-free surface condition are
still hampered by mesh-tangling problems.
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Part B: Capturing Method







CHAPTER 6

Linearized Godunov Scheme for Two-Fluid
Flow Computations

6.1 Introduction

This section will serve as a brief introduction to the second part of this thesis,
consisting of the Chapters 6, 7 and 8. As pointed out in the introduction of this
thesis; free-surface methods can be roughly divided into two classes: moving-grid
techniques and fixed-grid techniques. The former have been considered in Chapters
2-5. The latter will be the subject of Chapters 6, 7 and 8. A general exposition
of capturing methods has already been given in Chapter 1. Here, we will confine
ourselves to a small resume.

In capturing methods, the free surface is determined through solving the initial-
boundary-value problem governing the two-fluid flow problem, without imposing
free-surface conditions. The location of the interface can be elegantly defined with
the level-set method. A recent overview of this method is provided in [54]. This
method is also adopted in these chapters, where the interface is defined as the ‘zero
level-set’. Here we will employ a finite-volume discretization of the governing partial
differential equations and boundary conditions. This discretization method requires
an evaluation of the flux functions at the cell faces. Our flux formulas follow from
the (approximate) solution of a two-fluid Riemann problem, which is the subject
of the present chapter. The next chapter will provide an analysis of the so-called
‘pressure-oscillation’ phenomenon, i.e., the zeroth-order accurate, non-monotone
behaviour of the pressure across the contact discontinuity, which represents the
two-fluid interface. A number of fixes for the pressure-oscillation problem, which
have appeared in the literature, is investigated. From this investigation the ‘ghost-
fluid’ method emerges as the best. This method will then be used in a flow problem
where the gravity force is the sole external force driving the flow. This flow problem
is investigated in Chapter 8.

In the present chapter, the emphasis lies on the development of a liquid-gas
Godunov-type scheme, in combination with a level-set technique, i.e., on flows with
a single spatial dimension only. The contents of the chapter are the following. In
Section 6.2, the continuous flow model is given (conservation laws, equation of state
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and level-set equation). In Section 6.3, the space discretization of the equations is
presented (the Riemann problem and the corresponding Godunov-type scheme, at
both interior and boundary cell faces). In Section 6.4, we show that this scheme is
a linearized, two-fluid Godunov scheme.

6.2 Flow model

6.2.1 Conservation equations

We assume that the two fluids are immiscible. Denoting the densities of the two
fluids by p; and ps, this implies that if p; > 0 then ps = 0 and — vice versa — if
p2 > 0 then p; = 0. See Figure 6.1 for a 1D illustration with x s, the location of
the free surface.

pl pz

0 . 0 I/-\_/

X X

5 5

a. Fluid 1 b. Fluid 2

Figure 6.1: Density distributions in 1D flow of two immiscible fluids.

The immiscibility also implies that wi(zss) = ua(zyss) = u(zys), ie., the free
surface is a contact discontinuity. The separate masses of the two fluids need to be
conserved. In 1D, this means that for a stationary control volume Q:

dp1
Edfﬂ + (P1u) a9, gne — (P1U)0Qu.; =0, (6.1a)
Q
dpo
Edw + (p21)002,. 40 — (P2t)002. ;. = 0 (6.1b)
Q
— fgz (p1t+p2)dx

For the control volume €2 we may next define the bulk density as p = Todo

which, for p; € CO[V;](i = 1,2), is equal to p = %, where V7 and V; are
the sizes of the subvolumes of €2 that are filled with fIU|d 1 and fluid 2, respectively.
Introducing the volume fraction « of fluid 1, a = we can write

V1+V2’
p=ap1+(1—a)p, a€]l0,1]. (6.2)

An alternative for (6.1) is then

/ Lz + (pu)ogy on, — (P00, = 0, (6.3)
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plus a still to be determined equation for the location(s) x s, of the interface(s) in
space and time. The latter equation determines & = «(x,t). Looking ahead at the
differences between both formulations in a numerical implementation, we already
note that with the bulk-density formulation, in a finite-volume discretization, total
mass of the fluid will be conserved, but not necessarily the masses of the two
separate fluids. In case a(x,t) is not exactly resolved, the two separate masses
are not conserved. As opposed to that, with formulation (6.1) in a finite-volume
discretization, the masses of the separate fluids are always exactly conserved. Hence,
when using formulation (6.3), an accurate resolution of the interface location(s) is
of paramount importance.

As far as momentum is concerned, the bulk density is a more practical quantity
than the densities of the two separate fluids, because — as opposed to mass — the
momenta of the two fluids do not need to be conserved separately. Only the total
amount does, the two fluids can exchange momentum. Because surface tension is
not considered, it also holds p;(z¢s) = pa(xfs) = p(xyfs). So, for the momentum
equation we can write

d(pu
/ ((Z )dx + (pu2 + p)@ﬂright - (pU2 +p)6Qleft =0. (64)
Q

To describe two-fluid flows, we opt for the bulk-density description, i.e., equations
(6.2)—(6.4). This system of equations is not yet balanced. There are six unknowns:
P1, P2, P, D, u and a. The equation for the location of the interface (determining )
still has to be chosen. For this, we follow a level-set approach, to be discussed in
the next section. For the remaining unknowns p; and pq, equations of state p;(p)
and p2(p) are chosen in Section 6.2.3.

6.2.2 Level-set equation

As mentioned above, to conserve the masses of the separate fluids as accurately
as possible when using the bulk-density formulation, it is essential to resolve the
free-surface locations as accurately as possible. For that purpose, the level-set
approach is (in principle) better suited than the VOF approach, because of its
better smoothness properties. Good smoothness of the level-set function is first
taken care of in the level-set function's initialization. A common approach is to
initialize the level-set function as the signed distance to the initial free surface, with
the distance positive in — say — fluid 1 and negative in fluid 2. The choice for
the signed-distance function may not be attractive though. In case of, e.g., a 1D
flow problem with two interfaces (Figure 6.2), the level-set function initialized as
the signed-distance function would look as depicted in Figure 6.3a, i.e., perfectly
smooth at both free surfaces, but with a non-differentiability in between. Denoting
the level-set function by ¢, in formula, the function in Figure 6.3a reads

¢(z) =min (z — ()1, (Tfs)2 — ). (6.5a)
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(xf.v)l (st)z

Figure 6.2: 1D two-fluid flow with two interfaces.

The initial level-set function does not need to be the signed-distance function. An
alternative for it, which is uniformly smooth, is sketched in Figure 6.3b. In formula,
here, one may think of, e.g.,

o(x) = e~ (@ (@) (@—(2s)2)* _ (6.5b)
¢ ¢
0 0
(xﬁ)l (), * (), (), *
a. Signed-distance function b. Continuously differentiable function

Figure 6.3: Possible initial level-set functions for 1D two-fluid flow with two interfaces.

In [44], numerical experiments are performed with level-set functions similar to the
latter. For our present applications, the level-set function does not need to be
uniformly smooth, except at the interfaces. Therefore, in the present chapter we
adopt the signed-distance function as the initial level-set function.
In 1D, the level-set function is advected by

0 0p

—t+u—=0 6.6

ot oz ’ (6:6)
with « the local velocity. Combined with bulk-mass conservation equation (6.3),
quasi-linear equation (6.6) may be written in the conservative form

/ d(gt(b) dr + (Puﬁb)aﬂﬁgm - (pugﬁ)aﬂleﬁ =0. (67)
Q

However, because p¢ is not a physical quantity, there is no need to conserve it. The
form (6.7) is simply practical because it is consistent with the system (6.3)—(6.4),
it can be directly added to it.

As soon as the level-set function becomes insufficiently smooth during its ad-
vection, assuming there is a smoothness criterion available, it must be regularized.
Crucial in this reinitialization is that the free-surface location(s) at that specific
moment are preserved as accurately as possible. If this is not taken care of, the
reinitialization can be even counterproductive.

The advantages of level-set methods over particularly VOF methods are:
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e Level-set functions are smooth at physical discontinuities and — hence — can
be advected in a numerically accurate way precisely there. As opposed to
that, the less smooth VOF function may easily smear out or become non-
monotonous during its advection, thus deteriorating the resolution of the free
surface.

e The level-set equation can be directly embedded into the system of fluid-flow
equations and discretized collectively and consistently with these. E.g., it can
be included into the Godunov-type scheme, which is what we will do. Related
to this, there is no principal difficulty in extending a 1D level-set technique to
multi-D.

6.2.3 Equations of state

In our water-air computations, for both fluids, elegant use can be made of a single
equation of state, Tait's [9, 71]:

where the subscript oo refers to some reference state. For water, it holds (at sea
level conditions): v = 7, B = 3000, po, = 1000 kg/m?, and for air: v = I,
B =0, poo = 1 kg/m3. With (6.8), both the water and air density, to be denoted
from now on by p,,(p) and p,(p), are convex functions of pressure. Likewise, the
corresponding bulk density is:

p(#,p) = a(¢)pw(p) + (1 — a(d))pa(p), al¢) €[0,1]. (6.9)

The physical consequences of this overall convexity are that neither locally very low
speeds of sound (much lower than in pure water or pure air), nor entropy-condition-
satisfying expansion shocks can occur. These two anomalous phenomena are typical
for flows with non-convex equations of state, flows with, e.g., condensation or
vaporization [29], and cannot occur in the immiscible two-fluid flows considered
here. To give some more evidence of this, consider the speed of sound of the bulk

-1
fluid: ¢? = g—ﬁ. Using (6.9), we can write % = % + 152 with ¢ = (d(g#) and

p
~1
= (d”“) . So,

dp

2 2
2 c,,C

w a

- ac2 + (1 —a)ez’ (6.10)
Assuming that for any given p, ¢, < ¢, from (6.10) it is seen that ¢, < ¢ < ¢, for
all « € [0,1]. In two-phase flows with condensation or vaporization, the pressure-
density diagram may look as sketched in Figure 6.4a, i.e., as a non-convex curve with
extremely small values of the speed of sound, Z—;’, in the condensation/vaporization
zone. As opposed to that, in the case of two immiscible fluids, a family of purely
convex curves exists, curves that become increasingly steeper for increasing o (Fig-

ure 6.4b). So, for any p and for all values of o € (0, 1) it holds ¢, < ¢ < ¢,.
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A slight inconvenience of the nonlinear equation of state (6.8) in combination
with (6.9) is that the calculation of p for known p and «, « € (0,1), needs to be
done numerically.

p 4 oy

i1

liquid
cor}dénsation - gas liquid
"2~ vaporizatién
—| —1
0 N oL 0 o 0
a. For two-phase flows b. For immiscible two-fluid flows

Figure 6.4: Pressure-density diagrams.

6.3 Discretization

6.3.1 Finite volumes

Summarizing, for a control volume €2, the system of equations considered reads

| e+ (F@)om e~ (F(@)otrcr, = (6.112)
Q

with the state vector ¢ :  x RT — R? and the flux function f : R? — R? given by

p pu
g=| pu |, flad=]| pu*+p |, (6.11b)
pe pup
where
p = a(d)pu(p) + (1 — a(d))pa(p), (6.11c)
and

(Pw)oo

B e B e
puw(p) <p+ wpoo) , pa(p) <p+ apoo) 7 (6.11d)

- (1 + Bw)poo (pa)oo (]- + Ba)poo

and with a(¢) the fraction of the size of 2 over which ¢ > 0. The natural dis-
cretization for (6.11a) is a finite-volume technique. We consider cell-centered finite
volumes with, for simplicity, constant mesh size h. This choice directly allows us to
work out the discretization of a(¢). Consider finite volume €2, and its left and right
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neighbours (Figure 6.5) and define the level-set values at the cell faces 9;_, and
Q1 as

bi_1 = (¢z 1+¢i), P = %(ﬁﬁi + hiv1). (6.12)

Figure 6.5: Finite volume ©; and its two neighbours.

Then, for ¢; > 0, we propose the following expression for «;:

gbi,% >0, ¢Z+% >0: o =1, (6.133)
1 Pi
o 1<0, 1 >0 aj==———+1], 6.13b
o 2 ¢+2 2<¢i_¢i—% ) ( )
1 Pi
120,01 <0: == [1+—2 ), 6.13c
¢ 3 ¢+2 2( ¢1¢7+;> ( )

1 Pi Pi

b1 <0, ¢i1 <0: ;= <¢Z s - @-—%;)' (6.13d)
The four possibilities in (6.13) are illustrated in Figure 6.6. So, in determining
bi_1 and ¢, 41, as well as z(¢ = 0), use is made of piecewise linear interpolation
of gb The linear interpolation is exact as long as the level-set function is the signed-
distance function. As soon as this distance property is lost, the exact conservation
of the separate water and air masses is lost. For ¢; < 0, similar expressions can
be written. Using this similarity, the system of expressions for «; can be coded
compactly.

o

Figure 6.6: Four possible combinations of signs of ¢;_1 and ¢, 1, ¢ > 0.
2 2
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6.3.2 Riemann-problem approach

For the control-volume formulation, we need a formula for the flux vector across
a cell face. The formula must have built-in physics for accurately capturing the
free surface. For that purpose, trivial, term-by-term flux formulas such as, e.g.,
(f(Q))H% =f (%(% + q7;+1)) are less appropriate than formulas derived from the
Riemann problem. Besides a good capturing of the free surface, a Riemann problem
approach is expected to yield robustness and a good boundary-condition treatment.
For ship-hydrodynamics applications, a physically proper discretization of convec-
tion terms may be as relevant as for aircraft and spacecraft aerodynamics. The
convection phenomena in ship hydrodynamics are less rich (no supersonic speeds),
but the Reynolds numbers are generally higher (up to O(10%)).

The exact solution of the 1D Riemann problem on each cell face, Godunov's
approach [26], requires the exact computation of the cell-face state. For the cur-
rent equations, this implies the use of a numerical root finder. We avoid this by
considering an approximate Riemann solver: Osher’s [56], to start with. Denoting
the left and right cell-face state by go and ¢1, and the flux formula by F'(qo,q1),
Osher's approximate Riemann solver may be written as

F(q0,q1) = f(qo) +/ 1 %dq, (6.14)

with df;—; the negative eigenvalue part of the Jacobian g—{]. The eigenvalues of the

present Jacobian are: \; = u — ,/g—f), Ao=u,\3=u+ g—i. Note that g—; does
not occur in the wave speeds. The right eigenvectors are

1 0 1
ri=u— /8| = (0] = [u+ /3. (6.15)
¢ 1 ¢

The Riemann-invariant relations describing the two intermediate states q1 and qz
along the wave path in state space, see Figure 6.7, are

°1 1 |op 71 |op
ur + [ Edp=u +/ = Edp, 6.16a
1 / S\ 9,0 = 1o A9, (6.16a)

¢1 = o, (6.16b)
ur =uz =ut, (6.17a)
PL =Ppz =DPL, (6.17b)
P31 [op 71 fop
2 — —/=—dp=u; — -/ =d 6.18
uz / o\ 9p p=ul / op P, ( a)
¢z =P (6.18b)
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Figure 6.7: Wave path in state space for immiscible two-fluid flow.

The level-set function ¢ can only change along the subpath corresponding with
the eigenvalue g, i.e., as it should be, across the contact discontinuity. It is
invariant along the outer subpaths, i.e., along both subpaths the distance to the
free surface is constant. Through the known Riemann invariants u and p at the
contact discontinuity, the kinematic and dynamic free-surface boundary conditions
(zero mass transport and stresses) are satisfied. The integrals in (6.16a) and (6.18a)
can be written out explicitly for the equations given in (6.11d). However, when a
free surface is captured, i.e., when gb% and ¢z differ in sign, explicit calculation of
U1 and p1 is hampered by nonlinearity, the aforementioned drawback of Osher’s
scheme. (A transcendental equation needs to be solved.) Of course, uy and pi
can then be determined numerically. Given foreseen future applications in which (3
and p1 need to be differentiated with respect to go and ¢;, we do not do so and
propose another approximate Riemann solver in the next section.

6.3.3 Two-fluid, linearized Godunov scheme

Since ¢ is constant along the two outer subpaths of the wave path in Figure 6.7,

along both subpaths the bulk density can only vary due to pressure changes. Because

the flows to be considered are uniformly low-subsonic, large density changes will not
- - i PL1 /op Pz 1 /op

occur there and — consequently — the integrals [*s ; apdp and ["3 - apdp can

be linearized by good approximation around pg and p;, respectively. Linearization
of (6.16a) and (6.18a) yields

uy =up— (p1 — Po)%, (6.19)
C1
ur =u1 + (p2 —pl)a. (6.19b)
Likewise, p1 can be linearized around py and p;:
p1 =po+(py — po)cy, (6.20a)
pr=p1+(pz - p1)cs. (6.20b)

Elimination of p1 — po and p2 — p; from (6.19) and (6.20) yields

pr—DPo

UL —Uu
1 0

= —Co, C() = pPoCo, (6213)
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pr—p1
——— =C;, C1=pic, (6.21b)
U% — U1
ie.,
Couo+Crui+(po—p1)
") = CotCh , (6.222)
P C1po+Cop1+CoCi(uo—u1)
2 Co+C1

with for the density and level-set function in the two intermediate points:

. n p%—f’o
( Pi >: Po+ = , (6.22b)

‘75% o
P%—Pl
( P3 ) - (6.22¢)
‘75% o1

Excluding all supersonic possibilities from the matrix in Figure 6.8, which shows all
possible combinations of eigenvalue signs along the wave path — note the consequent
improvement in efficiency — the two-fluid, linearized scheme reads then:

Piv3
Flqo,q1) = f(az) P%UE +py |, ifug 20, (6.23a)
pyuydy
P33
F(q,q1) = f(qg) = p%uz% +py |, ifup <0 (6.23b)
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Figure 6.8: All possible eigenvalue-sign combinations along wave path from Figure 6.7, crossed

out: all supersonic speeds.

Note that the real nonlinear flux functions f(q%) and f(q%) are applied, and not
Flao,a1) = f(a0)+(a3 —q0) Z5eL if uy > 0and F(qo, 1) = f(q1)+ (a2 —ar) L)
if ur < 0. There is no need for the latter linearized formulas. On the contrary, as
opposed to (6.22)—(6.23), they may give rise to an erroneous, ambiguous flux at
uy = 0 (steady free surface); f(qo) + (a3 — qO)%ZO) and f(q1) + (g2 — m)%ﬂ
may be different for ur = 0.

For the single-fluid case, (6.23) reduces to

pLU

=

F(QOa CI1) =

s

1 =p(p1), (6.24)

=N =

PyuL TPy

with u1 and p1 still given by (6.22a). The latter scheme is known as the single-fluid,
linearized Godunov scheme, see Section 2.3 and Appendix A in [46], and also Section
9.3 in [75]. In Section 6.4, through a (partial) derivation of the (exact) Godunov
scheme, it is shown that the present two-fluid, linearized scheme (6.21)—(6.22) is in
fact the two-fluid, linearized Godunov scheme. For clarity, in the following, we only
use the latter name for scheme (6.22)—(6.23).
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6.3.4 Boundary-condition treatment

The boundary of the computational domain is formed by cell faces. The fluxes
across the boundary faces can be computed with (6.23) as well. Denoting the state
at the boundary by g, in case of a left boundary gg = ¢, and in case of a right
boundary ¢; = ¢,. For (subsonic) inflow, in 1D, two of the three components of
gy, must be imposed, reducing the wave path of the two-fluid, linearized Godunov
scheme, see Figure 6.9. In case of (subsonic) outflow, a single component of g,
must be imposed, leading to the reduced paths given in Figure 6.10.

qb 92/3 \ / ql/} qb

ql qO

a. Left boundary b. Right boundary

Figure 6.9: Reduced wave paths for inflow boundary.

q] q()

a. Left boundary b. Right boundary

Figure 6.10: Reduced wave paths for outflow boundary.

With (6.14), for left inflow and left outflow it holds, as it should be, F(gp,q1) =

f(gv) and for both right cases, identically, F'(qo, qv) = f(q0)+f(a)—f(q0) = f(av)-
We work out the inflow and outflow boundary, and the non-permeable boundary as
the limit case. For all three it holds, for a left boundary:

Py —P1

— = (1, (6.25a)
Up — U7
and at the right:
=P _ g, (6.25b)
Up — Ug

Inflow boundary

The two boundary conditions to be imposed here cannot be u; and p; simultane-
ously; when wy, is imposed, p, follows from (6.25) and vice versa. Hence, the second
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boundary condition must be one for ¢,. To compute the corresponding boundary

flux f(qp) = (pbub,pbuﬁ +pb,pb(bb)T, the ‘0D’ bulk density still needs to be de-
fined. In 2D and 3D, the bulk density can be computed in a normal 1D and 2D
manner, respectively. In 1D, an appropriate ‘0D’ choice is

Py = pu(pp), for ¢p >0, (6.26a)

o = pa(dp), for ¢p <O0. (6.26b)

Outflow boundary
Here, in addition to (6.25a) and (6.25b), the equations

d)b = ¢07 (6273)

o = 1 (6.27b)

are available. So, the single boundary condition to be imposed must be wy, py, or
some combination of both. The bulk density p; is defined as in the inflow case.

Non-permeable boundary

At a non-permeable boundary (at least) u, = 0 must be imposed, which, given
(6.25), already determines p,. Considering a non-permeable boundary as the limit
case of an inflow boundary, ¢, must still be imposed. Considering it as the limit of
outflow, ¢ follows from the interior solution (¢, = @1 for left boundary and ¢, = ¢
for right). The latter limit case is to be preferred for, e.g., ship-hydrodynamics
applications. As opposed to the first limit case, it allows the water line to freely
move up and down the ship hull, see Figure 6.11. Also here, the bulk density may
be defined according to (6.26).

fixed —_| L fixed
free/ N free
4

s
a. Fixed waterline, ¢,=0(s) a. Free waterline, ;=0 or ¢,=0;

Figure 6.11: Cross section of ship hull with free surface.
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6.4 The two-fluid Godunov scheme for Tait’s equation of state

6.4.1 State space, Poisson curves and Hugoniot curves

For the present two-fluid case, just as for the single-fluid case, in physical space, the
left and right Riemann states (ug, po) and (u1, p1) are connected to the intermediate
state (u%,p%) through either a rarefaction wave or a shock wave. The four different
possible pairs of shock and rarefaction waves that exist are sketched in Figure 6.12.

t t
rarefaction wave shock wave
(Uy5.01p) (Uyp.P10)
(uoqpo) (Ml,pl) (u0‘p0) (ullpl)
x x
a b.
t t
(Uy0.010) (Uy5.010)
(5. Po) (u,.p)) (5. Po) (1)
x x
c d.

Figure 6.12: Wave combinations in physical space.

In the single-fluid case, the four states (u%,p%) corresponding with those in
Figure 6.12 are determined as the intersection in the (u, p)-state space of either two
Poisson curves (Figure 6.13a), a Poisson and a Hugoniot curve (Figures 6.13b and
6.13c), or two Hugoniot curves (Figure 6.13d). The Poisson curve through a point
(uk,pr), k = 0,1 represents all states (u,p) that can be reached from (uy,px)
through a single rarefaction wave, the Hugoniot curve all points reachable through
a single shock wave. For details about this (single-fluid) theory, see Sections 80
and 81 in [21]. The specific forms of the Poisson and Hugoniot curves depend on
the equation of state considered. In general, the curves are nonlinear. For a brief
description of the two-fluid case on the basis of Tait's equation of state, see the
next section.



6.4 The two-fluid Godunov scheme for Tait's equation of state 119

: Hugoniot curve

— — — — : Poisson curve

p p
\ / e -1
e 0
12 S
u u
a b.
p p
12
09 g1
1 - . -
7 -1 0"~
u u
c d.

Figure 6.13: Poisson and Hugoniot curve combinations in state space, single-fluid, combinations

a—d correspond with wave pairs in Figures 6.12a—d.

6.4.2 Families of Poisson curves

For a two-fluid model in which the bulk density description (6.11c) is used, through
a point (ug, px), k =0, 1 in state space, instead of a single Poisson curve, a family
of Poisson curves exists, one curve for each value of the Volume-of-Fluid fraction
ag, a € [0,1], k = 0,1. For rarefaction waves connecting (ug, po) to (u%,p%),
the family is determined by

P 1 Po 1
u+/ —dp:u0+/ —dp, (6.28a)
pc pc

with the bulk density p = p(ay, p) according to (6.11c) and the corresponding speed
of sound ¢ = ¢(ag, p) according to (6.10), ag € [0, 1]. Equation (6.28a) is equal to
the first equation in (6.16a) with integration to p instead of to p. For rarefactions
connecting (u,p1) to (u%,p%), the family of Poisson curves is determined by

P P1 q
u— / —dp =uy — / —dp, (6.28b)
pc pc
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with the similar expressions for p(a1,p) and ¢(aq, p), a1 € [0,1]. Finding formulas
for the Poisson curves for general oy and a1, (ap, 1) € [0,1] x [0, 1], is tedious.
For convenience, here we consider the case ap = @3 = 1 only (100% water in both
the left and right control volume). For a = 1, with Tait's equation of state, it holds

p(p) = (%) " (Poc)w (6.29a)
_( p+ Bypso “’,“jr;l o (14 By )poo
c(p) = <m) (coo)ws  (Coo)w = ’Yw—(poo)w . (6.29b)

Substitution of (6.29a) and (6.29b) into (6.28a) and (6.28b), and integration, yields
for the exact Poisson curves

Jw—1 Y —1
vy — =2 ( P+ Bupsc )— ) <po+Bwpoo >—] o)
Yo — 1 [\ (14 By)poo (14 By)pso oo
(6.30a)
for ag = 1, and
Jw—1 Jw—1
vy = 2 (P—&-Bwpoo)“‘“ _(M) 2W'w](coo)w
Yw — 1 (1 + Bw)poo (1 + Bw)poo ’
(6.30b)

for a; = 1. Linearization of (6.30a) and (6.30b) around (ug,po) and (u,p1),
respectively, gives, denoting pc by C":

-1
P~ Do S <du) S —(Co)w, for Qp = ]., (6313)
U — Ug dp .

— du
pTp_ (-) = (C1)w, fora; =1, (6.31b)
U — Uy dp "

which is in agreement with the direct linearization of (6.16a) and (6.18a), which
gives (6.21a) and (6.21b), respectively, which —in fact — already are the two families
of linearized Poisson curves, with bulk densities pg and p; and speeds of sound ¢
and ¢; valid for all (g, 1) € [0, 1] x [0, 1].

6.4.3 Families of Hugoniot curves

In a Lagrangean formulation in which the shock wave is set still, across a shock
connecting the pre-shock state (ug,pp) and the post-shock state (u%,p%), the flow
is always from left to right, see Figure 6.14a. Vice versa, across a shock connecting
the pre-shock state (u1,p1) and the post-shock state (u%,p%), the flow is always
from right to left, see Figure 6.14b.
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u Uyp Up U
i IPRLLY I S

X X

a. Shock wave connecting (u,.P,) and (u,,.p,,) b. Shock wave connecting (u,,p,) and (u,,,,p,,)
Figure 6.14: Shock waves in shock frame.

In the shock frame, the jump conditions corresponding with the situation of Figures
6.14a and 6.14b are, respectively

HE
MR

where m is the mass flow |pu| through the shock wave and [-] denotes the jump
operator. For a derivation of these shock relations in a Langrangean formulation,
see Section 62 in [21]. From both (6.32a) and (6.32b) it follows

)
m= T/ (6.33)

Using (6.33), the above two jump conditions for momentum can be written as,
omitting the subscripts for the post-shock quantities,

1
p
—Uu

] : (6.32a)

pP—Dp

o

pP—Po=— 1 1 (’LL - uO)a (6343)
o P

pP—p1= pl—ipi (u —uq). (6.34b)
P1 P

With in equation (6.34a) the bulk densities pg = po(@o,po) and p = p(ao,p)
according to (6.11c), (6.34a) determines one family of Hugoniot curves, one curve
for each value of oy € [0,1]. Likewise, (6.34b) does for oy € [0,1]. Equations
(6.34a) and (6.34b) are the shock analogies of the rarefaction equations (6.28a)
and (6.28b). Working out (6.34a) and (6.34b) for general cp and 3 on the basis
of Tait's equation of state is tedious. As far as the nonlinear equations are concerned,
here we also restrict ourselves to the specific case ag = oy = 1 (100% water in
the left and right control volume). Elimination of the densities from (6.34a) and
(6.34b) with Tait's equation of state yields after some rewriting

1 P+BwpPoo _
p—po=—(Cp)y | ——LotBupe —(u—up), forag=1, (6.35a)

’yw 1 _ Po+BuwPoo Tw
P+Buwpeo
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1 P+BwPoo
P1+BuwPos - (u _ ul); for o = 1. (635b)
Tw g _ (pl+Bwpoo)W

p—p1=(C1)uw
p+Bwpoo

Linearization of (6.35a) and (6.35b) around (ug, po) and (u1, p1), respectively, yields

_ du '
P=Po _ (_“) = —(Co)w, forag=1, (6.36a)
U — ug dp -
pP—n du ™!
v (%> =(C1)w, forag; =1, (6.36b)

p1

which is identical to (6.31a) and (6.31b) (as it should be because the Hugoniot
curve and the Poisson curve through a point in state space are tangent to each
other in that point).

Equations (6.34a) and (6.34b), which are valid for general ap and «a, respec-
tively, can also be linearized more directly. For that purpose, rewrite both equations
as

p—po = —\/Ppoy/z:iz (u—uo), po=po(ao,po), p=plao,p), o €[0,1],
(6.37a)

pP—D1
N s (wu—w), p1=pila,p1), p=pla,p), o €[0,1]
(6.37b)
Linearizing ,/ﬁ:ﬁg as cq, ,/7;:’;1 as c1, and taking /ppo and \/pp1 as py and p1,

respectively, more directly gives the familiar linear relations

P~ Do = —CQ, CO = CO(OZO,PO), Qp € [Oa 1]7 (6383)
U — Uug
PZPL_ ¢y, ¢ =Cilon,p), ar€ [0, 1]. (6.38b)
U — Uy

6.4.4 Intermediate states

For the wave pairs sketched in Figure 6.12, the intermediate states (u%,p%) lie in
or at the boundaries of the shaded quadrilaterals in Figures 6.15a—d. The specific
state (u%,p%) is determined by the specific values ag and a;. Note that due to
the convexity of the Poisson curves, the linearized expressions are more sensitive to
cavitation, in case of a double rarefaction, than the nonlinear expressions are. A
double rarefaction in pure water is even more sensitive than a double rarefaction in
pure air; compare (u%,p%)a0:17a1:1 to (u%,p%)%:o,al:o in Figure 6.15a.
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: linearized Hugoniot curve
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Figure 6.15: Families of linearized Poisson and Hugoniot curves in state space, two-fluid com-

binations a—d correspond with wave pairs in Figures 6.12a—d.



124 Linearized Godunov Scheme for Two-Fluid Flow Computations

6.5 Conclusions

To accurately compute compressible, immiscible two-fluid flows with very large den-
sity differences (water-air flows, e.g.) we have proposed a method that uses a level-
set technique to distinguish between the two fluids. The resulting equations have
been discretized through a finite-volume method. To compute the fluxes across
the finite-volume walls (the level-set flux being one of the flux-vector components),
we have proposed a two-fluid, linearized Godunov scheme. The scheme allows a
physically correct capturing of the interface across a single cell face, as well as a
neat boundary-condition treatment (no sticking of free surfaces to solid walls, e.g.).
The scheme combines good physical properties with simplicity and efficiency.



CHAPTER 7

Fixes for Solution Errors near Two-Fluid
Interfaces

7.1 Introduction

A known difficulty of capturing contact discontinuities in a conservative formulation
of the two-fluid Euler equations is that zeroth-order solution errors (in literature
often referred to as ‘pressure oscillations’) may arise near the contact discontinuity.
(For tracking and fitting approaches this problem does not exist.) We will show that
the solution error referred to is proportional to the density ratio. For large density
jumps across the interface, the errors may even degenerate to instabilities. Fixes for
this solution-error problem are available. We refer to the works of Karni [35, 37]
and Abgrall [2], their common paper [3], and also to [25, 34, 70]. In most of the
available capturing literature though, the ratio of the two densities at the interface
is of the order 1-10%. To our knowledge, only in [25, 70] ratios of approximately
103, typical water-air ratios, are considered.

Conservative capturing through the two-fluid, linearized Godunov scheme pro-
posed in the previous chapter also suffers from the problem. In this chapter, we
will show this on the basis of a model flow with known exact solution. Flows with
a single spatial dimension only are considered. The spatial simplicity allows us to
compute fluid-flow problems with known exact solutions.

The contents of this chapter are the following. In Section 7.2, we analyze the
solution-error problem near interfaces. Next, in Section 7.3, some approaches to
fix the problem are described. Not all of these approaches (some of them already
known) appear to work for water-air flow with its large density jump. One fix is
proposed which works perfectly, it is a simple variant of the ghost-fluid method [25].
In Section 7.4, numerical results are presented for compressible water-air flows.
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7.2 Error near interface

7.2.1 Fluid-flow equations

The fluid-flow model is identical to the one introduced in Section 6.2. Here we
will briefly summarize the equations again. To describe a 1D two-fluid (water-air)
flow, consider (for a sufficiently small control volume €2) the following system of
equations:

S pu pu
/Q@ pu |de+ | pu?+p —| pu?+p =0, (7.1a3)
pP pue a0 pup O e

right

with p the bulk density, which is defined as

p=a(d)pw(p) + (1 —a(d))pa(p), (7.1b)

where « is the volume-of-water fraction, ¢ the level-set function, and where p,,(p)
and p,(p) are the equations of state for water and air, respectively. For the latter,
we use Tait's:

1 1
P+ BuPoo \ P+ Bapoo \
w = \77 5 w ) oo a =\ 77 a)oo- 7.1c
et = () o 0= (g e 020
The level-set function ¢ is initialized as the signed-distance function and is taken
positive in water.

7.2.2 Analysis of flow model

Consider a 1D tube with unit length, = € [0, 1], inflow at = 0, outflow at z =1
and with as initial solution:

u(z,t=0)=U >0, (7.2a)
p(e,t=0)=P, (7.2b)

T — — pw(P), xﬁ(xfs)tzo, 2
p(x,t =0) { polP), @2 (27),s (7.2c)

where U and P are constant, and where x s, is the location of the free surface, the
water-air interface. For ¢ > 0, the corresponding exact Euler-flow solution simply
reads u(z,t) = U, p(x,t) = P, p(x,t) = pyu(P) for x < (wys),_, + Ut and
p(x,t) = pa(P) for x > (wy,),_, + Ut , see Figure 7.1. The model flow seems
trivial, but it is not. It precisely uncovers the deficiency of capturing methods with
regard to material interfaces.
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P, (P)

Pu(P) |
0 X 1

Figure 7.1: Water-air interface running from left to right through a 1D tube, at constant speed
U and pressure P.

For the problem at hand, for the space discretization of (7.1a) we consider an
equidistant finite-volume grid with mesh size h. For the time integration, just for
convenience, we take the forward Euler scheme. The space discretization is taken
first-order accurate. Then, denoting the solution in cell ¢ at the old time level by

q®, q = (p, pu, pd)T, we have as equation for the solution q?“ at the new time
level: At
+1
6" = — 5= (Fla} i) — Flail1,47)) (7.3)

with At the time step, and with F' denoting the two-fluid, linearized Godunov flux
(6.22)-(6.23). Considering the situation where ¢ ;, ¢i and ¢, are according
to initial solution (7.2), with (z,)" = z;_1 (see Figure 7.2), with the two-fluid,
linearized Godunov scheme we get

pitt = 0puy + (1= 0)pa; (7.4a)
(pu)i ™ = (0puw + (1 = 0)pa) U, (7.4b)
n h
(p?)] ™" = (0pw — (1= 0)pu) 5, (7.4¢)
where o = UTét is the CFL number.
p
P, (P) |-
—7Ft U
P
R —— : ‘
T | \] i \l i+ *
i-; i+7

Figure 7.2: Bulk density distribution near cell i at time level n, water-air interface at @, 1.
2
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n+1
Note that p!'™' according to (7.4) is exact, as is u*! = % = U. However,
for ¢+ it follows from (7.4) ’
¢n+1 _ (pqs);H_l _ OPw — (1 - U)pa E (75)
' p?+1 opw + (1 —0)pa 2’
whereas the exact discrete solution reads (¢?+1)emct = f% + oh. Hence, for the

local discretization error Agb?“ = QS?"H - ((bnﬂ)emct it holds

3

n+l Pw — Pa

Ag; o(l—o) opet (= 0)pe h. (7.6)
So, Agtt = 0 only if (trivially) ¢ = 0, if ¢ = 1, or if p,, = pa. For 0 < o < 1 and
Pw > pa it always holds A¢! ™ > 0. The local discretization error (7.6) is O(h),
but can not be made of higher order by applying a higher-order discretization. This
holds for any numerical flux function F. Higher than first-order accuracy is simply
inhibited by the bulk density, which is a smeared out representation of the exact
discrete density. Through bulk-density formula

p(6,p) = a(9)pw(p) + (1 — a(9))pa(p), «a(s) € [0,1], (7.7)

with a denoting the volume-of-fluid (water) fraction, the error (7.6) carries over into

a pressure error Ap!'t'. Given Ap'™! =0, from (7.7) it follows after linearization

that
Apn+1
7l+1 — n+1 A n,+1 P 1
7 (az + az ) <pw( )+ C%D(P))
Aanrl
1—af* — Aaf™) ( pa(P : 7.
+ (1 -] o) \PalP)+ 5y ) (7.8)
hence,
Apitt = “Cuce (Puw = pa) A,

(ar™ + Aaf ) 2+ (1 — 't — Aol th) 2

(7.9)
From the formulas for the volume-of-fluid fraction «; as given in (6.12)—(6.13),
it follows that, besides on A¢!*!, Aa' also depends on A¢?™! and A¢l .
For the model flow considered, it follows with the two-fluid, linearized Godunov

n+1 n+1
scheme: @1 = (pﬁﬁl =L+ ohand ¢t = (pfi)ﬁl = —3 4 oh, which are
i—1 ) Pit1

both the exact results. Resuming, we have ¢! "' = —2 4+ oh + Ag!*!, ¢ =

oh+ 2+A¢! ! and ¢:‘:j = —h+oh+ 3A¢"t!, with Ag?™! according to (7.6).
2
With the procedure for computing the volume-of-fluid fraction « as described in

Section 6.3.1, the following expressions can then be derived for the error Aa?’“ =

a?Jrl - (a?Jrl ) exact”

1 =
2

1 A¢n+1
n,+1 —_ - 7 7'7,-&-1 <
Aoy <2 + O’) T AT Agb:-”'l , 9T <0, (7.10a)
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3 A¢n+1
+1 _ +1
Note that Ao = O(1), i.e., mesh-size-independent and — hence — with (7.9) also
the pressure error A]DZ”"‘1 is! Also note that the pressure error (7.9) is proportional
to the density ratio 2«. This illustrates the poor, density-ratio-dependent solution-
. Pa . . . .
error behavior already mentioned in the beginning of this chapter. Note that the
error behavior is not so poor that the denominator A — A¢?*! in (7.10a) may

become zero for 0 < o < 1 and py, > pq.

7.2.3 Guidelines for error improvements

Before proposing improvements of the poor local error behavior near the interface,
it is useful to make an error analysis of bulk-density relation (7.7) and — also — to
consider the conservative equations near the interface.

Error analysis of bulk-density relation

Errors in the pressure and volume-of-fluid fraction (Ap and A«) induce an error in
the bulk density (Ap), which, given (7.7), satisfies the equation

p+Ap=(a+Aa)pu(p+Ap)+ (1 —a—Aa)p.(p+ Ap). (7.11)

For the model flow and discretization method considered in Section 7.2.2, we found
Ap =0 and Aa = O(1). Then, according to (7.11), Ap = O(1) as well, which
is in agreement with what we derived in Section 7.2.2. Near the interface, instead
of the zeroth-order pressure error Ap described by (7.9)—(7.10), we ideally prefer
Ap = 0, which implies according to (7.11)

Ap = Aa(pw(p) — pa(p))- (7.12)

One of the fixes to be considered in the following is to make the numerical method
so that Ap and A« exactly satisfy (7.12).

Reconsideration of fluid-flow equations near interface

Consider the situation in which the interface is in cell 2 = Q; (only the interface,
so no shock or rarefaction). Since velocity and pressure are continuous across
the interface, for sufficiently small ;, we may then write by good approximation:
Uj_3 =u; 1 =u;and p;_1 =p; 1. With this, (7.1a) can be rewritten as

)

a p p
— | pu |dr+u U — | pu =0, (7.13)
q, dt
pe pe 09, PP/ a0,

i.e., as i
q _
/Q, e (diy —ay) =0, (7.14)
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which is a system of advection equations for the entire solution vector ¢;. (Con-
tact discontinuities are linear phenomena.) If all conservative solution compo-
nents are advected — p;, (pu); and (p¢); — then any solution component in §;,
either conservative or non-conservative, is. le., in (7.14), in a cell with (only)
a contact discontinuity, instead of the fully conservative solution representation
qi = (ps, (pu)i, (pd);) we may equally well consider, e.g., the partially conserva-
tive representation ¢; = (p;, (pu);, @;), the fully non-conservative representation
gi = (u;, 4, @), or whatever. This knowledge is important. In combination with
error equation (7.11), it allows us to derive a fix for the zeroth-order error observed
in Section 7.2.2.

7.3 Fixes for error in cell with interface

7.3.1 Advection of level-set function

This approach is based on the observation made in Section 7.2.2 that the update
of ¢ through division of (pg)"*! by p?*! leads to a first-order accuracy barrier
in ¢?+1 because of the intrinsic smearing in the bulk-density representation itself.
For the update of the real physical quantities p; and (pu); we may stick to the
conservative formulation and, hence, to the two-fluid, linearized Godunov scheme.
Doing so, with the forward Euler, first-order upwind discretization of the single
advection equation

/ —d:z: + u; ng% — ¢i,%) =0, (7.15)
for the model flow considered — in addition to (7.4a) and (7.4b) for p?*' and
(pu) T - we get

h
oit = =5 +ah, (7.16)

which is exact. Note that gb?’“ is exact because ¢ has been defined as the signed-
distance function. A nonlinear spatial distribution of ¢ would have yielded an error
A@™!. Because AgItt = 0, it also holds Aot = 0. Since ApI™ = 0 as
well (Section 7.2.2), from (7.11) it then follows Ap:”rl = 0. In all other cells, the
fully conservative scheme (7.3) is applied, yielding there the exact discrete solution.
However, at time level n+ 2 the numerical solution is no longer exact. According to
the linearized Godunov scheme it holds for first-order state interpolation to the cell
faces: p"+11 =i = pu, pﬁﬂl =" = 0pu+(1—0)p, and u"+11 = uﬁ? =U.
Then, from (7.3) it follows p”+2 = 20pyw + (1 — 20)pg — 0%(pw — pa), Whereas
(p?“)ewct = 20py + (1 — 20)p,. Hence, Apit? = —02(py, — pa). With the
forward-Euler, first-order upwind discretization of (7.15), it follows A¢! 2 = 0 and,
as a consequence, A" = 0. With (7.11), it then follows, since Ap"+2 o),
that Ap;”r2 = O(1). So, this partially conservative approach is not a fix. With some
tricks one can make the method work. Taking for the left and right cell-face densities
to be substituted into the linearized Godunov scheme, instead of the bulk densities,
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the local (non-bulk) densities (pure water or pure air) at ¢t = ¢", the method works
as long as the interface does not cross a cell face during a time step. |l.e., the method
works for o = i with m integer. For the problem at hand, verify that, instead

of pfl = 0pu + (1 = 0)pa, this would have yielded p'*) = p, (pure air), and so
(with p?jll = p and u?;ll =U): p™ =20py, + (1 — 20)pa, thus Apl't? =0,
2 2

and — hence — with Aat? = 0: Ap}™? =0, instead of Ap?™? = O(1). However,
aforementioned requirement on o is too restrictive to let the method be of much

practical use.

7.3.2 Advection of velocity, pressure and level-set function

Taking in (7.14) q; = (ui, pi, ¢:), with (u;_1,p;_1) = (U4 1,p;4 1), it follows the
exact result

n+1 n
u u 0 U
P =l p | + 0 |= P . (7.17)
o ) o /. oh b4 oh

7 K2

However, in cell £;,1 an error arises. Verify that q:fll is still exact, q;fll =

(U,P,—3h + oh), as is ¢’y = (U, P,—3h + oh), but for t = t"*2 we find

i+2
with the linearized Godunov scheme: p;"_:'lz = pa + 0%(pw — pa). For o < %
this is wrong; water is erroneously transported from cell i into cell i + 1. The
corresponding error reads: Ap;”r2 = 0%(pw — pa) = O(1). Meanwhile, for o < %
such that ¢?:f = :‘jgz are both still negative, we correctly find a7 = 0. So,
2 v 2
with (7.11) it then follows Ap?;:'f = O(1) and therefore this approach — although

(trivially) fixing the pressure-error problem in the cell with interface — is not (yet)
good either, because it yields an error in a neighbouring cell.

7.3.3 Advection of density and volume-of-fluid fraction

In Section 7.2.3 we have seen that if Ap and A« are such that (7.12) is satisfied,
then Ap = 0. We derive a possible fix which is based on (7.12). On the basis of
general advection equation (7.14), we can directly write the advection equations

dp
/Qi Edm + u; (,OiJr% — pi—%) =0, (7.18a)

do
/Qi deJru,; (aﬂ_%—ai_%) = 0. (7.18b)

The peculiar cell-face based volume-of-fluid fractions o; 1 and a; 1 in (7.18b)
may become functions of real volume-of-fluid fractions upon further discretization.
Yet, further discretization is not necessary since (7.18a) and (7.18b) are identical.
‘Extension’ of the relation p;_1 = p;, 1, which underlies (7.14), to p;,_1 =p; ;1 =

p; implies that with p = apy, (p) + (1 —a)pa(p), (7.18a) can be rewritten as (7.18b).
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So, when we maintain (7.18a), the updates (p?** — p), (p ™2 — p?*t1), etc. which

it renders, may be directly translated (through (7.12)) into updates (o' — a?),
("2 —a"t1), etc. Whereas in the previous fix the pressure error was explicitly set
to zero, here it is implicitly done so. However, as with the fully non-conservative
approach from Section 7.3.2, in the second time step an O(1) pressure error arises
in neighbouring cell 2,1, when the fully conservative approach is still applied there.
Moreover, even in a better case, this fix will yield an exact pressure solution at the
expense of a diffused density profile.

A perfect fix is a variant of the so-called ghost-fluid method [25]. This variant
is described in the next section.

7.3.4 Ghost-fluid method

In [25], the ghost-fluid method is introduced for the non-homentropic Euler equa-
tions of gas dynamics. For our more compact system of fluid-flow equations, we
propose a simple variant of the ghost-fluid method. As the so-called ghost cells we
define those cells in which there is an interface, i.e., a zero of the level-set func-
tion. These cells are considered in an ambiguous manner: as fully filled with water
(ghost water) and as fully filled with air (ghost air). Then, still considering the 1D
situation for convenience, across the two walls of the ghost cell, both water and air
fluxes of mass and momentum are computed (ghost fluxes). On the basis of the
difference between the two ghost-water fluxes, the ghost-water solution is updated,
i.e., its mass and momentum. Likewise, the ghost-air solution is. Expressed in
(u, p)-variables, these two new ghost solutions (for water and air) will be exactly
the same in the absence of pressure waves, which is the case for the 1D problem
introduced in Section 7.2.2. Throughout the entire computational domain the level-
set function is simply advected with (7.15). In case the updated ghost-water and
ghost-air solutions do differ, we propose the following. From the (updated) level-set
solution, the volume-of-fluid fraction in the ghost cell can be computed. Then, the
solution in the ghost cell is made unique with

(“>a(““’>+(1a)<““>. (7.19)
p Pw Pa

There are no physical or mathematical arguments for applying this weighting, other
choices are possible. The fluxes (real and ghost) are computed with the single-
fluid version of the two-fluid, linearized Godunov scheme. To compute a water
flux (either real or ghost), in the expressions for w1 and p1 given in Section 6.3.3,
for po,p1,co and c; the water values are taken. The computations of the air
fluxes is done in a similar fashion. Note that in the computation of all types of
fluxes (real or ghost, water or air), use is made of the same, unique values of
w and p in each cell. This uniqueness ensures that the free-surface conditions
are satisfied implicitly. In [25], for the non-homentropic Euler equations of gas
dynamics, entropy is extrapolated across the interface. The present homentropic
equations do not require any solution-component extrapolation. Tangential velocity
components do not yet apply here. In multi-D, in each cell, besides the physical
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normal velocity component and pressure, we would also use the physical tangential
velocity components available there. With Navier-Stokes as the ultimate flow model,
like the normal velocity component and pressure, the tangential velocity components
will also be continuous across the interface. Considering the 1D situation with, at
time t = t", the interface somewhere in cell 4, with — say — water at the left, in case
of the first-order accurate space discretization, the fluxes to be computed are those
depicted in Figure 7.3. So, only across the cell faces i — % and i + % ghost-water
and ghost-air fluxes are computed, across all cell faces left of cell face i — %: real

water fluxes and across all cell faces right of i + %: real air fluxes.

— : real-water flux —= : ghost-water flux
— : real-air flux — : ghost-air flux
interface
| | i =
= — —_—T —_—T
X
.5 .3 L' . .3 .05
-5 -5 -5 I+ I+ I+

Figure 7.3: Types of fluxes computed in present ghost-fluid method.

Note that in the ghost-fluid method the interface is no longer captured at the
smallest discrete level (that of a cell face), but at the next larger: a cell. Because in
the ghost-fluid method fluxes are always of the single-fluid type, explicit calculation
of u1 and p1 can be done by using, e.g., Osher's scheme, instead of the two-fluid,
linearized Godunov scheme.
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7.4 Numerical results

7.4.1 Water front at constant speed and pressure
Numerical choices

The first test case to be considered is the 1D tube flow already introduced in Section
7.2.2. Numerical values to be considered are: (zys)i=0 = 0.5 (initial interface
halfway tube) or (zfs)i=0 = O (initial interface at inlet boundary), U =1, P =1,
pw(P) =1, pa(P) = 0.001 (in the ideal case), vy = 7, Ya = %, By = 3000 and
B, = 0. According to the speed-of-sound relations

1+ By
2 =, L Belr, (7.20a)
Pw
&=y, (7.20b)
Pa

these values imply ¢, (P) ~ V/15c,(P), which agrees fairly well with common
sea-level conditions. As in Section 7.2, the grids to be used are equidistant. The
boundary conditions to be imposed are u(x = 0,t) = U > 0, ¢(x = 0,t) = Ut
and p(x = 1,t) = P. The space discretization is taken first-order accurate, like in
Section 7.2.2. Time integration is done with the forward Euler scheme, with the
time step constant and sufficiently small to guarantee stability:

h

N —
UU—i—cw(P)’

o<1 (7.21)

Results fully conservative approach

This is the approach without any fixes for solution errors near the interface. For the
numerical values just mentioned, the computation breaks down. Stumbling block is
the large density ratio. In Figure 7.4, pressure errors are depicted for computations
with successively the following three still rather small density ratios: % = 2,4 and
8, and after the following three numbers of time steps: 10 (left column of graphs),
20 (middle column of graphs) and 40 (right column). The time step on the coarsest
grid is twice as large as that on the middle grid and four times larger than that on
the finest grid. So, note that in each of the eight graphs (no results were obtained
for ;LZ’ = 8 and 40 time steps), the three pressure-error distributions correspond
with the same number of time steps (10, 20 or 40), not with the same time. The
pressure error appears to be about linearly proportional to the number of time steps
taken. In agreement with the theoretical findings, it also increases with the density
ratio %. The latter increase is clearly nonlinear. With the conservative approach,
results for ;)L”;’ = 1000 are still far out of reach. The deceptive performance of the
conservative approach was expected given the analytical results of Section 7.2.2.

Results advection of level-set function

Here the fix proposed in Section 7.3.1 is numerically investigated. The fix is applied
not only in the cell in which the interface actually is, but also in its left and right
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Figure 7.4: Pressure-error distributions fully conservative approach (solid lines: h = 15 coarsely
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neighbouring cell. The fix clearly gives an improvement as compared to the fully
conservative approach, but the fix is not adequate. For (z¢s)i=¢o = 0 and Z—”z =10,
in each of the three graphs in Figure 7.5 we present the computed bulk-density
profiles at ¢t = 0.0,0.1,0.2,...,1.0. The results look perfect, but they are not.
They are cursed with a pressure error, which for 2= = 10 is still negligibly small.
But, as in the previous section, the error grows rapiély with increasing density ratio
f}—:. Results similar to those in Figure 7.5 cannot be obtained for Z—”z = 1000,
not even for p—‘: = 100. From Figure 7.6 it appears that the pressure error grows
exponentially with ’;—Z.

Results advection of velocity, pressure and level-set function

Here, the fix proposed in Section 7.3.2 is tested. The advection of u,p and ¢ is
applied in the cell with interface as well as in its left and right neighbouring cell.
The fix is an improvement compared to that with advection of ¢ only, but it does
not work satisfactorily either. It also breaks down for increasing density ratio %;

for Z—‘: = 100 after t = 0.7, and for Z—‘: = 1000 after t = 0.4, see Figure 7.7.

Results ghost-fluid method

The fix proposed in Section 7.3.3 is skipped, its expected smearing of the density
excludes it as an interesting option here. The ghost-fluid method described in
Section 7.3.4 is interesting; it works, see Figure 7.8. For the problem at hand, it
even works for arbitrarily large density ratios, as can be seen in Figure 7.9.

7.4.2 Oscillating water column
Analysis

Although the previous constant-speed-and-pressure test case is not trivial from a
numerical point of view, from a physical perspective it is. As a second test case we
propose the following, physically more interesting test case. Consider a 1D tubular
circuit with a valve in it which for t < 0 is open. The tube contains a water and air
column (Figure 7.10), flowing (for ¢t < 0) at constant speed U and pressure P.
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Figure 7.5: Bulk-density profiles at ¢t = 0.0,0.1,0.2,...,1.0, fix with advection of level-set
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Figure 7.8: Bulk-density profiles at t = 0.0,0.1,0.2, ..., 1.0, ghost-fluid method, h = ﬁ.
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density ratios, h = i
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¢ valve

Figure 7.10: Tubular circuit with columns of water and air flowing at constant speed U and

pressure P.

At t = 0, when the water column’s center is at the maximum distance from the
valve, the latter is instantaneously closed. Ignoring curvilinearity, the initial situation
is as sketched in Figure 7.11.

air _ - U air

-1 - Xfs 0 Xfs 1

Figure 7.11: Initial condition: shut off tube with column of water in between two columns of

air, all three columns flowing to the right at constant speed U and pressure P.

Then, starting from ¢ = 0, the air at the right will be compressed by the water
and the air at the left will expand. Hence, a pressure difference is built up across
the column of water, with as a consequence a deceleration of the latter's flow to
the right, followed by a stagnation, and next an acceleration and flow to the left.
The latter leads to a reverse pressure gradient across the water, which will redirect
the flow from left to right again, and so on. Hence an oscillatory flow will emerge.
A subtle difficulty of this flow problem as compared to the foregoing translating
water-air interface is that here pressure waves interact with the water-air interfaces,
whereas in the foregoing translating water-air interface case, there are no pressure
waves at all.

An elementary analytical flow solution can be derived by making three simplifying
assumptions. The first is that the density in the two air columns depends on time
t only (not on the spatial coordinate ). Then, denoting the displacement of the
water column in positive z-direction by s(t), the density in the left and right air
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columns can be written as

A = TP pu(0) and (7:222)
) = 1= 2 pul0) (7.220)

respectively. With the equation of state, for the pressure in the two air columns it
then follows:

pi(t) = (—1 zﬁ‘(”s( t)) P (7.23a)
p(t) = (ﬁ) P (7.23b)

The second assumption is that the water column behaves as a rigid body. With
this, Newton's second law of motion applied to the water column’s motion reads

d?s

pw2xfsw = pl(t) —p"(t), (7.24)

which, with (7.23a) and (7.23b), yields as differential equation for s(¢):

d*s 1— x4 e 1—x¢s e
2 (2T ) (2T s P. 7.5
g = ((aitm) ~(atsm) ) 0

The third assumption made is that the water column's displacements are small
with respect to the length of the initial air columns: |s(t)] < 1 — x¢,. With this,
the pressure expressions (7.23a) and (7.23b), and hence the nonlinear differential
equation (7.25), can be linearized by good approximation:

d2S 2 ’YaP

—+w25207 W=
Pwas(l - xfs)

o (7.26)

With the initial conditions s(0) = 0 and d‘z(to) = U, the solution of (7.26) is

s(t) = v sin wt; (7.27)
w

the water column makes a harmonic oscillation with amplitude % and period 7 = 27“

The assumption that the pressure in the air columns is space-independent is satisfied
by good approximation if c,7 > 1 — x4, i.e., if

Lfs Pw

21
1_33)“5 pa(P)

> 1. (7.28a)

The small-displacement assumption |s(t)| < 1 — x ¢, implies

U Lfs Pw
ca(P)\ 1 =25 pa(P)

< 1. (7.28b)
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Requirements (7.28a) and (7.28b) conflict easily. Assuming that (7.28a) is satisfied,
(7.28b) can only be satisfied if TUH < 1, i.e., low Mach-number air flow. With
the linearized versions of pressure relations (7.23a) and (7.23b), for the pressure

coefficients P! = pl(t# and P" = ”T(t#, it holds

P(t) = Va7 S(2f , (7.29a)
P(t) ="y i(tx)fs. (7.29b)

The two coefficients are exactly opposite in phase.

Numerics

We proceed by presenting numerical results obtained through the ghost-fluid method.
In the numerical computations, both water and air are taken as compressible. As for
the previous test case, we take v, = 7, V4 = % B,, = 3000, B, =0, p,(P)=1
and po(P) = 0.001. Furthermore, we take U =1, P =1 and zy; = 0.1. For
these numerical choices, in Figure 7.12a we first give the time evolution of Pl and
P according to the analytical estimates (7.29a) and (7.29b). For the numerical
computations, an equidistant grid with h = % is applied. The space discretiza-
tion is again first-order accurate and time integration is once more done with the
forward Euler scheme. The level-set function is taken as the signed-distance func-
tion. For this test case, as opposed to the foregoing, the level-set function is
reinitialized. The reinitialization is done after each time step and is done as a
signed-distance function. In Figure 7.12b the time evolution of the pressure coeffi-
cients P(x = —1,t) = w and P(z = 1,t) = p(”’:l% is given. Note
that although requirement (7.28b) is not satisfied very well for the aforementioned
numerical values, the analytical results depicted in Figure 7.12a still agree fairly well
with the nonlinear numerical results. Also for this test case, the ghost-fluid method
appears to work fine.
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Figure 7.12: Time evolution of pressure coefficients at left and right boundary (solid lines: left
boundary, dashed lines: right boundary).

In the ghost cells, the conservation laws are applied to virtual (ghost) amounts
of water and air, not to the real physical amounts. So, conservation of the real
amounts of mass and momentum is not guaranteed automatically. In case of ac-
curate resolution of the level-set function and the pressure, in and near the ghost
cell(s), mass and momentum are expected to be accurately conserved though (not
exactly). In Figure 7.13a we give the time evolution of the relative mass error
M(t) = %{g)‘lm), where m,(t) is the total mass of air in the closed tube at
time t. The mass error appears to be composed of two components: one oscillating
and the other behaving linearly in time. Both obey the numerical method's order of
accuracy, which is O (At, Ax) here. To show the latter, in Figure 7.13b the time
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evolution of the relative mass error is given for a grid and time step twice as fine
as those corresponding with Figure 7.13a. Both the oscillation's amplitude and the
linear behavior's slope appear to have been halved approximately. Due to the still
relatively coarse resolution of the water column (8 and 16 cells, respectively), the
mass error for water (not given) does not yet show asymptotic first-order conver-
gence behavior.

o
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Figure 7.13: Time evolution of relative error in total mass of air in closed tube.

The present test case shows that the ghost-fluid method is not exactly con-
servative when pressure waves interact with two-fluid interfaces. Recently, Van
Brummelen and Koren have proposed a two-fluid method which does not suffer
from the pressure-oscillation problem and which is also exactly conservative [13].
Their method is applied to a test case in which a shock wave hits a water-air inter-
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face. Neither zeroth-order pressure errors nor mass-conservation errors are observed
in their numerical results.

7.5 Conclusions

To avoid large solution errors near interfaces (an intrinsic problem of capturing
methods), four fixes have been proposed, three consisting of some locally non-
conservative solution update and as the fourth a ghost-fluid fix. For density ratios
of the order 1000 (typical water-air ratio) the non-conservative fixes fail, in the
analysis as well as in the numerical experiments. As opposed to that, the ghost-
fluid technique works. Even the computation of fronts running into vacuum (’;—i’ =
o0) is possible with the ghost-fluid method. Since in the ghost-fluid method only
single-fluid fluxes are computed, it does not need a two-fluid Godunov approach.
The first numerical computations performed with the discretization method are
promising. Extensions to higher dimensions, higher accuracy, flows with gravity, etc.
are challenging. The test case performed with the oscillating water column suggests
that the method may lend itself particularly well for applications as, e.g., the impact
of storm surges on ships and off- and onshore constructions. Compressibility plays
an important role in these problems.



CHAPTER 8

Computation of Gravity-Driven, Immiscible
Water-Air Flows

8.1 Introduction

In Chapter 6 we introduced a hyperbolic system which describes the dynamics of
two immiscible, compressible fluids. This system represents the conservation of
bulk mass and bulk momentum. An additional equation is added to describe the
behaviour of the interface, separating the two fluids. The system of equations is
balanced by specifying an equation of state relating the bulk density to the pressure.
For this purpose Tait's equation of state is used. A further equation is added
to establish the relation between the bulk density and the densities of the two
separate species, for a given pressure. In the current chapter we compute solutions
of this two-fluid system, under the action of gravity. We consider the flow of
water underlying air (the normal situation in ship hydrodynamics), driven by the
presence of the gravitational field. By considering both fluids to be compressible the
gravity force enters the equations as a source term, resulting in a non-homogeneous
hyperbolic system. In this chapter the effects of this non-homogeneity will be
investigated, which will lead to an efficient way of implementing the source term
into a numerical scheme. The spatial discretization of the system of equations
is obtained using a finite-volume method with an approximate Riemann solver to
determine the fluxes on the cell faces. Here the single-fluid linearized Godunov
scheme, derived in Chapter 6, is used for this purpose. Furthermore the ghost-fluid
method, see Section 7.3.4, is used to deal with the cells in which the interface is.
All this will be demonstrated on a 1D model problem.

8.2 Equations of motion

8.2.1 Fluid motion

We consider the flow equations (7.1a) for the bulk density and momentum, extended
with the gravity force working in the negative z-direction. These equations read,
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for an (open) interval 2 C R:

d
Y 2+ F(@)o0,.ms — F(@o0nse = Q [ gdz, V(r.t) e QxRY, (81)
2

q dt
[ B pu B 0 0
() mo=( ) o=(2 D). o

@ is the matrix due to the presence of the gravity force. Note that the source term
is linear in the state vector q. The parameter Fr = % is the Froude number, with
U and L being a characteristic speed and length, and g the acceleration of gravity.

The system is again balanced by the bulk-density relation

p=a(d)pw(p) + (1 — a(d))pa(p), (8.3)

in which « is the volume-of-water fraction, ¢ the level-set function and where p,,(p)
and p,(p) are the equations of state for water and air, respectively. The equation
of state for both fluids has the form

where

where B, ps, and ~y are constants depending on the type of fluid, and where p, is
the reference pressure for both fluids. The subscript oo refers to some characteristic
reference state. Excluding shock waves, the only discontinuity in the solution can
occur across the interface.

8.2.2 Interface motion

To specify the location of the free surface, a level-set method is employed. The
general idea of level-set methods is that an interface can be represented as a smooth
hypersurface I'(t) € R™ embedded in a smooth function ¢(x,t) € R"! for which
it holds

It)={xeR"t>0:¢(x,t) =0} (8.5)

The motion of the interface I'(¢) follows that of the function ¢. Note that in our 1D
model problem the interface I'(¢) is reduced to a point on the x-axis. First we will
construct the initial value ¢(z,0). The straightforward way of constructing ¢(x,0)
is to let it be a signed-distance function. For a single interface, this is done through
setting

¢(x,0) =Z(0) — x, (8.6)

where Z(0) is the location of the free surface at t = 0. Note that ¢(z,0) does
not necessarily have to be a distance function, see, e.g., [44]. Secondly the time
evolution of ¢(z,t), and therefore also the interface location, is described by

Oy + u(x,1)0,0 =0, V(z,1) € @ x RY, (8.7)
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with u(z,t) the underlying velocity field. This equation can be combined with the
bulk-mass conservation equation to give

0 (pd) + Oz (pud) =0, ¥(z,t) € Q2 x RF. (8.8)

Equation (8.8) can be incorporated into (8.1), which then has a state vector

).
q(z,t) = (p, pu, pp)" and flux function f(q) = (pu, pu® + p(p, ¢), pug)”. Note
that p = p(p, ). This dependence of p on ¢ (¢ is not a passive scalar) is called
feedback [44].

8.3 Analysis

In this section some analytical aspects of the 1D model problem will be established.
Here we will consider the case where the level-set function ¢ has not been incorpo-
rated into system (8.1). Incorporating the level-set function into the system is not
expected to alter the analytical results which are obtained below. To accommodate
the analysis we consider the system (8.1), written in quasi-linear differential form

o AW = (59)

The system of equations is strictly hyperbolic as can be observed from the eigen-
values and eigenvectors of the flux Jacobian A(q) = f/(q):

Alq) = (CQ Euz 21u> : (8.10)

The eigenvalues and (right) eigenvectors are collected in the matrices

1 1
A=<u+c 0 ) and R:( ) (8.11)
0 u—_c u+c u—c

Incorporating the level-set equation would result in an additional eigenvalue A = u.
After applying the transformation ¢ = Rw, with w : R x RT — R?, and after
right multiplication with R~!, system (8.9) can be rewritten as

ow ow
o T

- , - _ 1 (-1 -1
Qw, with Q:RlQR:W<1 1). (8.12)

The variables w are also known as the characteristic variables. Note that the system
of equations is still coupled through the righthand side.

8.3.1 Homogenization

In dealing with non-homogeneous systems of PDE's a number of different ap-
proaches has been developed. For instance in [39] it is shown that by incorporating
the source term into the flux function, as opposed to evaluating the source term in
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some straightforward manner, improvements in both accuracy and convergence rate
are accomplished. This result justifies the search for transformations through which
the present source term can be incorporated into the flux function as well. In the
remainder of this section we will investigate a transformation which does precisely
that.

In the hypothetical case that A(q) = 0, (8.9) reduces to a very simple differential
equation: the linear ordinary differential equation

Jq
—(z,t) = 1
5 () = Qu. (8.13)
of which the solution reads
a(@,1) = e¥q(x,0). (8.14)

Given the fact that here @ is nilpotent of index 2 (Q? = 0), (8.14) can be exactly
expanded as

q(z,t) = (I + Qt) q(x,0). (8.15)
Given solution (8.15), for the realistic case A(q) # 0 we postulate a solution of
(8.9) of the form:

q(z,t) = (I +Qt)q(,1). (8.16)
(So, for A(q) =0, it must hold: §(x,t) = g(x,0).) Substitution of (8.16) into (8.9)
yields

9q

E‘*'B(Q)

q . _
So =0, with Blq)=(+Q) AW I+Q).  (817)
Hence, equation (8.9) has been homogenized through the transformation (8.16).
Substitution of the known matrices @ and A (see (8.2) and (8.10), respectively),
yields for B(q):

B(g) = —u ! (8.18)
V= (2 —u?) —tFr?(2u 4 tFr~?) 2u4tFr 2/’ '

The eigenvalue matrix and the (right) eigenvector matrix of B(q) are

0 1 1
A= (T and R= . L) (819)
0 u—-c u + ¢+ tkr u — ¢+ tkr

Note that the presence of the source term does not influence the eigenvalues of the
Jacobian B(g) and that — as it should be — the non-homogeneous system (8.9) is
still strictly hyperbolic because the eigenvalues of B(q) are real and distinct. Also
note that the eigenvectors are now explicitly dependent on ¢ and Fr. (Compare
(8.19) with (8.11).) For sufficiently small ¢, I + Qt ~ I, and thus (8.16) may be
written as

a(,t) ~ 4(x,t), (8.20)
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and consequently (8.17) as

9q 9q
ot (Q)% ~
So, for sufficiently small ¢, an approximate solution method for (8.9) is to first find

a solution ¢(z, t) of the known homogeneous hyperbolic system (8.21), and next to
simply multiply this solution by I + Qt, i.e.,

a(a,t) == (I + Q) qla,1). (8.22)

0. (8.21)

8.3.2 Steady-state solution property

It can be easily shown that the stationary solution of (8.1) must satisfy

1 d
H= §u2 + / L Fr~?(z — ) = constant, (8.23)
p
where T denotes the free-surface location. Relation (8.23) holds for every invis-
cid barotropic flow. The pressure integral can be evaluated with the use of (8.4)
resulting in

dp c?

p -l
where c is the speed of sound. Note that H is discontinuous at the free surface.

(8.24)

8.4 Numerical method

As mentioned before, the discretization of the level-set equation can be done inde-
pendent of the Euler equations. This has the advantage that the level-set equation
can be discretized differently from the system of Euler equations. Many discretiza-
tions have been explored for the Hamilton-Jacobi equation which the level-set equa-
tion in fact is, see [55]. In [55], Hamilton-Jacobi-type equations are solved by using
techniques common for hyperbolic conservation laws. In the present work, equation
(8.7) is discretized with the forward Euler method in time and with the first-order
upwind, cell-centered finite-volume method in space. Numbering the finite volumes
by i (i increasing in positive z-direction), and the discrete time level by n, the
discrete version of (8.7) reads

ui + |uf|
2

i — |uj|

A\
i i 5

(¢F — di1) — A (¢ — i), (8:25)

where A = %. The discretization of the system of Euler equations is also obtained
through forward Euler and a first-order accurate, cell-centered finite-volume method.

Omitting the source term, this discretization reads

gt =g = NF(¢" %) — Fgq.4b)), (8.26)

where F'(.,.) is the numerical flux function, which is calculated using a single-fluid
Godunov-type scheme.
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The source term in the Euler equations is dealt with in the following manner.
The property that for ¢ | 0 the solution of (8.9) converges to the solution of (8.21)
inspired us to a two-stage solution algorithm for the non-homogeneous system, in
which we do the following per time step:

I. For a time step At, solve (8.1) with @ = 0. This can be done with one's own
preferred time integrator.

Il. Multiply the solution ¢ obtained from step 1 with I+ AtQ. Here the property
that @ is nilpotent of index 2 is exploited.

This procedure may be categorized as a splitting method [67]. However, it is not
a standard splitting method. Per time step, it requires the solution of a single
initial-boundary value problem only, as opposed to the two initial-boundary-value
problems that need to be solved in standard splitting methods.

The water-air interface is captured using the ghost-fluid method as described in
Section 7.3.4.

8.5 Numerical results

The numerical test case considered in this chapter is the steady-state solution of
(8.1) on the interval Q = {z : x € [0, 1]} for the initial solution

u(z,0) =0, p(z,0)=1, VreQ, (8.27)

with the free surface initially set at Z(0) = 0.5, and with Fr = 0.5, p,(2,0) =
L,z < 0.5 and p,(z,0) = 1072,z > 0.5. The boundary conditions imposed are
u(0,t) = 0 and p(1,t) = 1. So, at = = 0 the tube is closed and at = 1 it is open.
A situation sketch is given in Figure 8.1.

X

!

1
B
S

05 ______ g

~
N
S
=

0

Figure 8.1: Air column on top of water column.
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For the steady solution it holds u(xz,t) = 0. A lower bound for the steady
pressure at the bottom of the tube (z =0) is

(pa)init (la)init + (pw )init (lw)init

plo=0)=plz=1)+ e

; (8.28)

where (1g)init and (ly)init are the lengths of the initial air and water columns,
respectively. An upper bound is

(pa)zn7t2(la)7n1t + (pw)init (lw)init

~ (8.29)

pla=0)=plr=1)+
We impose the lower bound (8.28). For the initial solution chosen, (8.28) gives
the exact bottom pressure value up to and including the third decimal digit: p(z =
0) = 3.002. Integration of the hydrostatic pressure equation

dp _

2 = B (p), (8.30)

with p(p) given by (8.4), yields for water and air, respectively,

_ —(poo)w Yw — 1$ = - _
pole) = (o e S+ e = 0)+ ) 5 -

_(poo)a Ya — 1 Ja—2 A’;ﬂil
nle) = (G e+ oo =) )T e2)
Equating both pressure distributions yields the location of the free surface . With
the numerical data at hand, this gives: Zepqaer = 0.49998. Knowing these ex-
act velocity and pressure distributions, the solution errors can be calculated. The
method as proposed in this paper is tested on three different grids, viz. with
Az = 1/40,1/80 and 1/160. The distributions of the pressure and velocity are
plotted in Figures 8.2 and 8.3. Figure 8.3 directly represents the error in the veloc-
ity distribution.
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Figure 8.2: Pressure distribution for grids with Az = ﬁ (O), Az = % (A) and Az = =

() and exact (=). Only every second marker is shown.
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Figure 8.3: Velocity distribution for grids with Az = 4—10 (O), Az = % (A) and Az = ﬁ
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| (A2)! ] ~
40 —9.56 x 103
80 —12.32 x 1073
160 —16.80 x 1073

Table 8.1: Relative error in free-surface location.
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Figure 8.4: Pressure-error distribution for grids with Az = ﬁ (O), Az = % (A) and Az = 1}%
).

The distribution of the pressure error A = |ppum — Dezact| is plotted in Figure
8.4. Inspection of the pressure-error distributions indicates that the pressure in pure
water, and in the interface cell is resolved with first-order accuracy. Also notice
the perfect first-order accuracy behaviour of the velocity. Even the solution wiggle
in Figure 8.4 nicely converges to zero at an O(h) rate. For each of the three
numerical solutions, Table 8.1 still gives the relative error in the location of the free
surface, % = TnumTezact  with Tepeer = 0.49998. The free-surface location for
the numerical solutions, Zyum = T¢—o, has been determined by linear interpolation
of the discrete values found. Its order of accuracy seems to be %

The distribution of the total energy H according to (8.23) is given in Figure
8.5. Note the discontinuity at the free surface due to the fact that [¢] # 0 across

the free surface.
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Figure 8.5: Distribution of total energy for grids with Az = ﬁ, (O), Az = % (A) and
Az = ﬁ (4.

Finally, Figure 8.6 shows the distribution of the bulk density on the different
grids. The bulk density is defined according to (8.3). These figures reveal that the
large density jump is confined to a single cell.
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8.6 Conclusions

In this chapter we have computed the steady-state solution of a flow in a 1D tube,
open at one side and containing two immiscible fluids, water and air. Most delicate
feature in this problem is the water-air interface with its large density jump (pw/pa =
10%). Our computational method, built up out of numerical ingredients such as a
level-set technique, a finite-volume discretization, a linearized Godunov scheme, a
ghost-fluid approach and a splitting technique for the source term, appears to work
fine. Applying first-order accurate state interpolation in the approximate Riemann
solver, it yields first-order velocity and pressure accuracy in all finite volumes filled
with water and also in the finite volume with the interface. Most important: our
computational method does not smear the jump in the density; the large density
jump is captured within one cell. Of possible interest for future research is the
solution of the homogenized system of equations for large time (steps).



CHAPTER 9

Conclusions and Recommendations

The two parts of this thesis, part A and part B, describe the research done on a
fitting method (part A) and a capturing method (part B) for the computation of
free-surface flows.

9.1 Fitting

The subject of part A is the development of an efficient method for the computation
of Navier-Stokes flow with a single free boundary, the free surface. This method is
directed towards solving free-surface problems from the field of ship hydrodynamics.
The method is the extension to 3D of the 2D non-monolithic free-surface algorithm
described in [12]. At the heart of this free-surface algorithm lies the nonlinear quasi
free-surface condition, which has been extended to 3D in this thesis.

Imposed pressure perturbation To start, we computed the shape of the sta-
tionary free surface due to a pressure perturbation imposed on that surface. The
free-surface algorithm appears to yield the proper 3D wave physics. A study of
the convergence behaviour revealed that the free surface converges almost grid-
independently. For linear and mildly nonlinear wave systems only a single free-
surface update may be sufficient for finding the wave pattern to within engineering
accuracy. An important result is the reduction of the inner iteration to a single work
unit only (a single relaxation sweep). This reduction yields a major improvement
in both robustness and efficiency. However, this improvement may be undone by
reflections originating from the artificial lateral boundaries. The subject of non-
reflecting boundary conditions for hyperbolic systems has received much attention
and is well understood. In contrast, non-reflecting boundary conditions for steady,
non-hyperbolic systems of equations (like the current) are not so well developed.
Therefore, we simply introduced a far-field dissipation zone, which is aimed at pre-
venting waves to reach the far-field boundaries. This approach works quite well for
the problems considered here. The size of the dissipation zone and the stretching
rate of the mesh size in the zone influence the convergence rate of the method.
Finding the proper size and stretching rate requires some a-priori knowledge of the
solution and experience of the code user. A more theoretical investigation into
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the subject of non-reflecting boundary conditions, for this type of flow problem,
would be useful. Numerical computations on a family of three grids (from very
fine to twice and even four times coarser), using a second-order accurate discretiza-
tion of the Navier-Stokes equations and the quasi free-surface condition, yields a
free-surface wave of which the wavelength increases with decreasing mesh size. A
Fourier-type dispersion analysis applied to the corresponding modified equations
confirms this experimentally found wave elongation, not only qualitatively but even
quantitatively.

Piecewise-uniform mesh We also investigated the suitability of a piecewise-
uniform mesh in comparison with the standard exponentially stretched mesh, for
our Navier-Stokes computations with free-surface water waves. An advantage of a
piecewise-uniform mesh is its simple generation, which, in our opinion, made it an
interesting candidate for implementation in a collective a-posteriori grid-adaptation
method for boundary layers, wake, . .. and free surface. The results obtained indicate
that a double-deck piecewise-uniform mesh performs comparably with the exponen-
tially stretched mesh in terms of computational work. However, the piecewise-
uniform mesh reveals a non-smooth solution behaviour at the interface between
the coarse and fine mesh. This is a clear disadvantage, which may be fixed by
moving the fine-coarse-grid interface to even more quiet solution regions. For the
present ship-hydrodynamics work this may easily be too far away (not only outside
the boundary layer and wake, but also outside the Kelvin wedge). A new triple
deck piecewise-uniform mesh, suggested by a study of our Navier-Stokes truncation
error, was still investigated. It was found that because of the presence of the extra
fine-coarse-grid interface in an even less quiet part of the flow domain (the lower
part of the boundary layer), here the solution accuracy is even less good than on
the double-deck mesh.

Series 60 hull The free-surface algorithm has also been applied to a standard
test case originating from ship hydrodynamics: the computation of the complete
flow field, i.e., the shape of the free surface and the underlying Navier-Stokes flow,
generated by a Series 60 hull at Fr = 0.316 and Re = 105. Three solutions were
computed here: (i) the solution belonging to a ‘double-body’ approximation, (i)
the solution belonging to a linearization of the free-surface flow, the ‘uniform-flow’
linearization and (i) the solution of the fully nonlinear free-surface flow problem. In
all three cases the method converged, but only in the latter two cases it yielded the
proper wave physics. Our best numerical solution still lacks in amplitude, compared
to the experimental results. The explanation is the first-order accurate discretization
of the quasi free-surface condition that we had to apply for this test case. A
detailed Fourier-type analysis showed that for finite Reynolds number, steady free-
surface waves cannot exist for the reduced Navier-Stokes equations, in combination
with the quasi free-surface condition, neither in the continuous case nor in the
desired fully second-order accurate discrete case. Fortunately, the Fourier analysis
also showed that for the reduced Navier-Stokes equations, steady waves can exist
when discretizing the quasi free-surface condition at first-order accuracy (under the
constraint that the mesh Reynolds number exceeds 2). The same Fourier analysis
also suggests that to find second- or higher-order accurate, steady solutions, the
full Navier-Stokes equations should be solved, instead of the reduced Navier-Stokes
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equations. Our free-surface method does not suffer from the ‘contact-line’ problem,
i.e., the incompatibility between the free-surface and boundary-layer conditions. The
interaction between the boundary layer and the free surface is nicely visible in, e.g.,
extra local thickening of the boundary layer. The numerical results have shown that
in the boundary-layer region a high-wave-number wave is present, which seems to be
physically correct but of which the existence is not known from classical analytical
theory on water waves. The robustness of the simple, efficient remeshing algorithm
that we proposed for the free surface appeared to be too small for these short
waves: they may induce mesh tangling. A fix in the context of free-surface fitting is
to apply a robust grid generator in each free-surface update. A future alternative is
the application of a free-surface capturing technique instead of a free-surface fitting
technique.

Fourier analysis Fourier analysis appeared to be a very powerful tool for inves-
tigating the existence of steady free-surface waves and the dispersion properties of
these waves in both the continuous and the discrete case. The smoothness of the
current Navier-Stokes solutions and their wavy character is the explanation for this
success. It is foreseen that Fourier analysis can be further exploited for the present
ship-hydrodynamics computations, maybe directly in 3D.

Newton iteration It is important to note that the current free-surface algo-
rithm transferred the computational complexity to the solution of sub-problems,
i.e., stationary Navier-Stokes boundary-value problems with the quasi free-surface
condition imposed on one part of its boundary. Here, Newton’s method was used
to deal with the nonlinearity, and preconditioned GMRES to solve the linear sys-
tems. In the numerical studies performed in part A of this thesis, solving the linear
systems did not seem to be the bottleneck. The main difficulty is the convergence
of Newton's method. Decreasing the tolerance for GMRES does not improve the
nonlinear convergence. A more detailed investigation of the nonlinear iteration is
required in order to increase the computational efficiency of the overall method.

9.2 Capturing

Two-fluid Godunov-type scheme Since free-surface flows can be considered as a
special case of two-fluid flows, and since capturing methods for free surfaces hold
out the promise of generality and robustness (no problems with breaking waves,
free-surface bifurcations, etc.), in part B of this thesis we concentrated on capturing
methods for barotropic, compressible two-fluid flows. We first presented a system of
hyperbolic conservation laws for the bulk flows and a level-set equation to distinguish
between the two fluids. A finite-volume discretization was applied and a two-fluid,
linearized Godunov scheme was derived to compute the fluxes at the cell faces.
This scheme is attractive because of its simplicity and computational efficiency in
combination with its good physical properties.

Pressure-oscillation problem A difficulty intrinsic to capturing methods is the
presence of a zeroth-order error in the pressure, at and near the two-fluid interface.
Here, four fixes for this error have been investigated, three consisting of some locally
advective solution update and as the fourth a simple ghost-fluid fix was proposed.
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For density ratios of the order 10? (typical water-air ratios), the advective fixes fail,
as opposed to the ghost-fluid fix. However, a slight disadvantage of the ghost-fluid
method is that it is not exactly mass conserving. Fortunately, the mass-conservation
error does not behave zeroth-order accurate; it decreases with decreasing mesh size.

Gravity The system of conservation laws was extended with a source term to
account for the gravitational force. Since this source term is linear an elegant
splitting technique could be used together with the numerical ingredients already
introduced in the previous chapters of part B. The resulting method was used to
compute the flow in a tube which is partially filled with water. The numerical
solution showed a wiggle near the interface which converges nicely to zero at an
O(h) rate as all other errors do. The important result is that our method does
not smear the jump in the density over a number of cells; the interface is captured
within a single cell only.

Perspective Capturing (and tracking) methods for two-fluid and two-phase
flows are very promising and developing rapidly. During the writing of this thesis, for
compressible, barotropic two-fluid flows, a conservative and pressure-oscillation-free
formulation was proposed by van Brummelen and Koren. At present, an extension
of the latter formulation is made to non-barotropic equations. Simplification to
incompressible flows are also foreseen. As far as ship hydrodynamics is concerned,
the perspective is the capability to compute flows which are hard or impossible to
handle with fitting methods (transom-stern flows, flows with breaking waves, ...).
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Samenvatting

Numerieke methoden voor waterstromingen met vrije-opperviaktegolven

De numerieke simulatie van gas- en vloeistofstromingen die (gedeeltelijk) begrensd
worden door vrije randen kent vele technische toepassingen, zoals bijvoorbeeld de
omstroming van schepen en off-shore constructies, de uitstroming in de atmosfeer
van een gasstraal uit een straal- of raketmotor, of de stroming van glas in een
glasoven. De bruikbaarheid in het ontwerpproces vraagt van deze numerieke meth-
oden een grote nauwkeurigheid en robuustheid tegen een aanvaardbare prijs.

In het eerste deel van dit proefschrift (Deel A, welke de hoofdstukken 2 tot en
met 5 omvat) beschouwen we een numerieke methode die geschikt is voor 3D,
stationaire vrije-randproblemen waarbij de vrije rand wordt doorsneden door een
‘drijvend’ lichaam (drijvend tussen aanhalingstekens omdat het lichaam niet kan
bewegen in de vloeistof; het wordt als het ware vastgehouden). Het algoritme,
dat gebaseerd is op ideéen en inzichten verkregen uit numerieke methoden voor
vrije-rand potentiaalstromingen, is een iteratief proces waarbij een reeks stationaire,
3D Reynolds-gemiddelde Navier-Stokes randwaardeproblemen wordt opgelost, met
de zogenaamde quasi vrije-randvoorwaarde opgelegd op het geschatte vrije opper-
vlak. Deze quasi vrije-randvoorwaarde is een combinatie van de kinematische en
dynamische vrije-randvoorwaarden.

Deze numerieke methode wordt getest aan de hand van een aantal voor de
scheepshydrodynamica relevante testgevallen. De numerieke resultaten laten zien
dat de methode tegen zeer acceptabele kosten de correcte golffysica voorspelt, zelfs
voor zeer sterke niet-lineaire golfsystemen. De robuustheid van de methode wordt
verder verbeterd door de frequentie waarmee het vrije oppervlak wordt aangepast
te verhogen. Deze verbeterde methode wordt toegepast bij het simuleren van de
Navier-Stokes stroming, inclusief het golvende wateroppervlak, rondom een Serie 60
romp. De eerste numerieke oplossingen vertonen al redelijk goede overeenkomsten
met in sleeptankproeven verkregen meetresultaten.

Hoofdstuk 5 bevat een theoretische analyse, met behulp van Fourier-theorie,
van het gelineariseerde, instationaire vrij-oppervlak randwaardeprobleem. Voor het
stelsel semi-discrete vergelijkingen wordt onder andere een voorwaarde afgeleid voor
het bestaan van stationaire zwaartekrachtsgolven in onze numerieke berekeningen.
Ook wordt een nauwkeurige analyse gedaan van de numerieke dispersiefout in de
oppervlaktegolven.
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In Deel B (hoofdstukken 6, 7 en 8) van dit proefschrift onderzoeken we een interface-
capturing methode. Bij verwaarlozing van de viscositeit wordt hierbij de stroming
beschreven door een stelsel inhomogene, niet-lineaire, hyperbolische partiéle dif-
ferentiaalvergelijkingen. De inhomogeniteit (bronterm) wordt veroorzaakt door de
aanwezigheid van het zwaartekrachtsveld. Aangezien de bronterm lineair is kan
er gebruik gemaakt worden van een elegante splitsingsmethode. Het systeem van
vergelijkingen wordt gediscretiseerd middels Godunovs methode waarbij er, ten be-
hoeve van de efficiéntie, een benaderende Riemann-oplosser wordt gebruikt. De
lokatie van het scheidingsvlak tussen de twee fluida wordt beschreven met behulp
van de ‘level-set’ methode en in de rekencel(len) waarin het scheidingsvlak zich
bevindt wordt de ‘ghost-fluid’ methode gehanteerd. Deze aanpak leidt tot bevredi-
gende resultaten voor de beschouwde testgevallen. Het grote voordeel van deze
methode is dat de grote dichtheidssprong niet wordt uitgesmeerd over meerdere
cellen, maar wordt gevangen in één cel.
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